首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scuticociliate Miamiensis avidus is a histophagous parasite that causes high mortality in cultured marine fishes, with clinical signs of severe ulcers and hemorrhages in the skeletal muscle. The internal transcribed spacer (ITS) region, which is widely used in taxonomy and molecular phylogeny because of a high degree of variation, was compared for 21 cloned strains of M. avidus (Ciliophora, Scuticociliatia). These strains were isolated from olive flounder Paralichthys olivaceus, ridged-eye flounder Pleuronichthys cornutus and spotted knifejaw Oplegnathus fasciatus in Korea and Japan. The ITS1 (140 bp), ITS2 (236 bp) and 5.8S (119 bp) regions from 21 strains were identical, indicating that these regions are highly conserved in M. avidus. Phylogenic analysis of ITS2 shows that the ciliate should be included in the Philasterida with a close relationship to Pseudocohnilembus hargisi. This study exhibits the first detailed analysis of the ITS1, 5.8 S and ITS2 rRNA regions of M. avidus.  相似文献   

2.
We compiled a 5.8S nuclear ribosomal gene sequence database for animals, plants, and fungi using both newly generated and GenBank sequences. We demonstrate the utility of this database as an internal check to determine whether the target organism and not a contaminant has been sequenced, as a diagnostic tool for ecologists and evolutionary biologists to determine the placement of asexual fungi within larger taxonomic groups, and as a tool to help identify fungi that form ectomycorrhizae.  相似文献   

3.
Summary The nucleotide sequence of cytoplasmic 5S ribosomal RNA fromEuglena gracilis has been determined to be: G- A C -G-U-A-C-G-G-C-C-A-U-A-C-U-A-C-C-G-G-G-A-A-U-A-C-A-C-C-U-G-A-A-C-C-C-G--U-C-G-A-U-U-U-C-A-G-A-A-G-U-U-A-A-G-C-C-G-G-G-U-U-A-G-G-C-C-C-A-G-U-U-A-G-U-A-C-U-G-A-G-U-G-G-G-C-G-A-C-C-A-C-U-U-G-G-G-A-A-C-A-C-U-G-G-G-U-G-C-U-G-U-A-C-G-C-U-Up. This RNA is 119 nucleotides long and the sequence of a probable tRNA-binding site is GAUU (position 41–44 from the 5-terminus), which is the same as that of a trypanosoma species,Crithidia fasci-culata. TheEuglena 5S rRNA has a pseudouridine residue at position 38 and 3-terminus is phosphorylated. The 5S rRNA sequence ofEuglena resembles those of several other protozoa and higher animals rather than plants.On leave from Department of Zoology, Hiroshima University, Hiroshima, Japan  相似文献   

4.
5.
6.
Summary 5S Ribosomal RNA sequences have proven to be useful tools in the study of evolutionary relationships among species. However, in reviewing previously published trees constructed from alignments of metazoan 5S RNAs, we noticed several discrepancies with classical evolutionary views. One such discrepancy concerned the phylum Arthropoda, where a crustacean,Artemia salina, seemed to be evolutionarily very remote from four insects. The cause of this phenomenon was studied by determining the 5S RNA sequences of additional arthropods, viz.Limulus polyphemus, Eurypelma californica, Lasiodora erythrocythara, Areneus diadematus, Daphnia magna, Ligia oceanica, Homarus gammarus, Cancer pagurus, Spirobolus sp.,Locusta migratoria, andTenebrio molitor. A tree was then constructed from a dissimilarity matrix by a clustering method known as weighted pair grouping. Application of a correction for unequal evolutionary rates improved the apparent evolutionary position of the arthropods and of some other metazoan species. However, neither the uncorrected nor the corrected tree permitted a completely acceptable reconstruction of metazoan evolution. We presume that this phenomenon is due to random deviations in the evolutionary rate of 5S RNA.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

7.
Summary In order to study the organization of the ribosomal RNA genes of Mycoplasma hyopneumoniae the rRNA genes were cloned in phage vectors EMBL3 and EMBL4. By subcloning the restriction fragments into various plasmids and analysing the resulting clones by Southern and Northern blot hybridization, a restriction map of the rRNA genes was generated and the organization of the rRNA genes was determined. The results show that the genes for the 16S and 23S rRNAs are closely spaced and occur only once in the genome, whereas the 5S rRNA gene is separated from the other two genes by more than 4 kb.  相似文献   

8.
Summary The eukaryotic 5.8S and the chloroplast 4.5S ribosomal RNAs were proposed to have arisen from the 5 and 3 ends respectively of prokaryotic 23S ribosomal RNA by the introduction of new processing sites during evolution. This hypothesis was supported by comparison of previously published primary sequences; in addition we can draw models of secondary structure in accord with this notion. Finally, we further noted that the sequence of processing cuts in the maturation pathway of ribosomal RNA reflects the probable order in which they arose during evolution.  相似文献   

9.
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.  相似文献   

10.
In the analysis of DNAase II digestion of chromatin, as described in the preceding paper, interactions between adjacent nucleosomes play an important part. In order to understand the mechanism of DNAase II cleavage we next investigated the role of histone H1 in these interactions and characterized the nucleoprotein particles arising in the course of DNAase II action.H1-free chromatin prepared by three different procedures, using either 0.6 m-NaCl, transfer RNA or an ion-exchange resin, can be cleaved by DNAase II only at the internucleosomal cleavage site leading to 200-bp2 digestion patterns regardless of the ionic conditions. When H1 was added back to the three chromatin preparations the 100-bp cleavage pattern could be restored only with material prepared by the resin method at low concentrations of salt. Addition of polylysine instead of H1 has the same effect, but only with material prepared by that method. A direct correlation between extended and condensed states of chromatin as monitored by electron microscopy and DNAase II cleavage in the 200 and 100-bp modes, respectively, could be established.The continuity of the nucleosome chains in DNAase II-digested chromatin is maintained in spite of intranucleosomal cleavage in the terminal section of the core DNA, even in the absence of H1. Addition of 3 m-urea, however, disrupts the nucleosome chains at the intranucleosomal cleavage sites and leads to the formation of novel nucleoprotein particles as seen in sucrose gradient centrifugations. Those sedimenting between mononucleosomes and dinucleosomes contain, almost exclusively, DNA of 300 bp (mouse) or 315 bp (chicken erythrocyte). They can be formed from particles sedimenting in the absence of urea in the dinucleosome region by either a dissociation process or a massive conformational change.On the basis of the results presented here and in the preceding paper a mechanism for DNAase II cleavage of chromatin in the 200-bp and 100-bp modes is proposed and discussed in the context of structural features of chromatin recognized by DNAase II.  相似文献   

11.
The most-important vetch species, Vicia narbonensis (narbon vetch, section Faba), Vicia villosa (hairy vetch, section Cracca) and Vicia sativa (common vetch, section Vicia) and their close relatives (often difficult to circumscribe into distinct taxa) constitute respectively, Narbonensis, Villosa and Sativa species complexes in the genus Vicia. The distribution of the 18S-5.8S-26S (18S-26S) and 5S ribosomal RNA (rRNA) gene families on the chromosomes of 19 (2n=2x=10,12,14) of the 24 species and subspecies belonging to the three species complexes, and Vicia bithynica (2n=12, section Faba) and Vicia hybrida (2n=12, section Hypechusa) was studied by fluorescence in situ hybridization (FISH) with pTa 71 (18S-26S rDNA) and pTa 794 (5S rDNA) DNA clones. Computer – aided chromosome analysis was performed on the basis of chromosome length, the arm-length ratio and the position of the hybridization signals. The positions of the four (2+2) signals of the two rRNA gene families were similar between each of the three, as well as two subspecies of V. narbonensis and Vicia johannis, respectively. Two major 18S-26S rDNA loci were found in the nucleolus organiser regions (NORs) of each of the species except V. hybrida, where it was present in two out of four SAT chromosomes. In addition to major NORs, two minor loci have been physically mapped at the centromeric regions of chromosomes of group 1 in Vicia amphicarpa, Vicia macrocarpa and V. sativa, and two NORs of group 5 in V. hybrida, and on the long arms of group 4 in V. bithynica. Two or four 5S rDNA loci, observed in the short arms of groups 2–4 and 5, and 18S-26S rDNA loci were located in different chromosomes of all the species within the Narbonensis and Villosa species complexes, and Vicia angustifolia of the Sativa species complex. In the remaining six species of the Sativa species complex, and V. bithynica and V. hybrida, the two or four 5S rDNA sites were present in chromosomes which harbor 18S-26S rRNA genes. The tandemly repeated 5S rDNA sites, located at the proximal part of the long arm of groups 3–5, were diagnostic for V. angustifolia, Vicia cordata, Vicia incisa, V. macrocarpa, Vicia nigra and V. sativa of the Sativa species complex. In V. amphicarpa of the same complex, the tandem repeats were located at the distal part of the long arms of group 3. Variability in the number, size and location of two ribosomal DNA probes could generally distinguish species within the Narbonensis and Sativa species complex, V. bithynica and V. hybrida. With respect to the four species of the Villosa species complex the karyotypes could not be identified individually on the basis of the distribution of two ribosomal gene families in three out of seven pairs of chromosomes. Received: 18 October 2000 / Accepted: 20 March 2001  相似文献   

12.
13.
Summary We have cloned and determined the nucleotide sequence of 18 DNA fragments hybridizing to 5S rRNA from twoAspergillus species-A. wentii andA. awamori. Four of the analyzed sequences were pseudogenes. The gene sequences of these two species were very similar and differed fromAspergillus nidulans at both constant and microheterogeneous sites.  相似文献   

14.
A detailed restriction endonuclease map was prepared for the cloned 5.8 S ribosomal RNA (rRNA) gene region of the brine shrimp Artemia. The nucleotide sequence of the 5.8 S rRNA gene and its flanking nucleotides was determined. This sequence differs in two positions from that of the previously reported 5.8 S rRNA. The primary structure of the Artemia 5.8 S rRNA gene, which, unlike in dipteran insects, is shown to contain no insertion sequence, is conserved according to the relatedness of the species compared. The 5.8 S rRNA gene flanking nucleotides, which were sequenced 176 nucleotide pairs upstream and 70 nucleotide pairs downstream from the gene, show no evidence of sequence conservation between evolutionarily diverse species by computer analysis. Direct nucleotide repeats are present within the flanking sequences at both ends of the gene at about the same distance upstream and downstream, which could serve as processing signals.  相似文献   

15.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

16.
Summary The effects of temporal (among different branches of a phylogeny) and spatial (among different nucleotide sites within a gene) nonuniformities of nucleotide substitution rates on the construction of phylogenetic trees from nucleotide sequences are addressed. Spatial nonuniformity may be estimated by using Shannon's (1948) entropy formula to measure the Relative Nucleotide Variability (RNV) at each nucleotide site in an aligned set of sequences; this is demonstrated by a comparative analysis of 5S rRNAs. New methods of constructing phylogenetic trees are proposed that augment the Unweighted Pair-Group Using Arithmetic Averages (UPGMA) algorithm by estimating and compensating for both spatial and temporal nonuniformity in substitution rates. These methods are evaluated by computer simulations of 5S rRNA evolution that include both kinds of nonuniformities. It was found that the proposed Reference Ratio Method improved both the ability to reconstruct the correct topology of a tree and also the estimation of branch lengths as compared to UPGMA. A previous method (Farris et al. 1970; Klotz et al. 1979; Li 1981) was found to be less successful in reconstructing topologies when there is high probability of multiple mutations at some sites. Phylogenetic analyses of 5S rRNA sequences support the endosymbiotic origins of both chloroplasts and mitochondria, even though the latter exhibit an accelerated rate of nucleotide substitution. Phylogenetic trees also reveal an adaptive radiation within the eubacteria and another within the eukaryotes for the origins of most major phyla within each group during the Precambrian era.  相似文献   

17.
Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11   总被引:9,自引:0,他引:9  
One 5S ribosomal RNA gene (5S rDNA) locus was localized on chromosome 11 of japonica rice by in situ hybridization. The biotinylated DNA probe used was prepared by direct cloning and direct labeling methods, and the locus was localized to the proximal region of the short arm of chromosome 11 (llpl.l) by imaging methods. The distance between the signal site and the centromere is 4.0 arbitrary units, where the total length of the short arm is 43.3 units. The 5S rDNA locus physically identified and mapped in rice was designated as 5SRrn. The position of the 5S rDNA locus reported here differs from that in indica rice; possible reasons for this difference are discussed. DNA sequences of 5S rDNA are also reported.  相似文献   

18.
We compare the 5S gene structure from nine Drosophila species. New sequence data (5S genes of D. melanogaster, D. mauritiana, D. sechellia, D. yakuba, D. erecta, D. orena, and D. takahashii) and already-published data (5S genes of D. melanogaster, D. simulans, and D. teissieri) are used in these comparisons. We show that four regions within the Drosophila 5S genes display distinct rates of evolution: the coding region (120 bp), the 5-flanking region (54–55 bp), the 3-flanking region (21–22 bp), and the internal spacer (149–206 bp). Intra- and interspecific heterogeneity is due mainly to insertions and deletions of 6–17-bp oligomers. These small rearrangements could be generated by fork slippages during replication and could produce rapid sequence divergence in a limited number of steps. Correspondence to: M. Wegnez  相似文献   

19.
20.
Summary The 5S ribosomal RNAs from the cell cytoplasm and cyanelle (photosynthetic organelle) ofCyanophora paradoxa have been isolated and sequenced. The cellular and cyanelle 5S rRNAs were 119 and 118 nucleotides in length, respectively. Both RNAs exhibited typical 5S secondary structure, but the primary sequence of the cellular species was clearly eukaryotic in nature, while that of the organellar species was prokaryotelike. The primary sequence of the cyanellar 5S rRNA was most homologous to cyanobacterial 5S sequences, yet possessed secondary-structural features characteristic of higher-plant chloroplast 5S rRNAs. Both sequence comparison and structural analysis indicated an evolutionary position for cyanelle 5S rRNA intermediate between blue-green alga and chloroplast 5S rRNAs.Contribution from the Department of Biochemistry, School of Agriculture and Life Sciences and School of Physical and Mathematical Sciences, North Carolina State University, Raleigh, North Carolina. This is paper no. 10259 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号