首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The voltage- and time-dependent properties of whole-cell, multi-channel (outside-out), and single channel inwardly-rectifying K+ currents were studied using adult and neonatal rat, and embryonic chick ventricular myocytes. Inward rectification of the current-voltage relationship was found in the whole-cell and single channel measurements. The steady-state single channel probability of opening decreased with hyperpolarization from EK, as did the mean open time, thereby explaining the time-dependent inactivation of the macroscopic current. Myocytes dialysed with a Mg++-free K+ solution (to remove the property of inward rectification) displayed a quasi-linear current-voltage relationship. The outward K+ currents flowing through the modified inward rectifier channels were able to be blocked by the local anesthetic and anti-arrhythmic agent, lidocaine.  相似文献   

2.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

3.
Inwardly rectifying potassium (Kir) channels are broadly expressed in both excitable and nonexcitable tissues, where they contribute to a wide variety of cellular functions. Numerous studies have established that rectification of Kir channels is not an inherent property of the channel protein itself, but rather reflects strong voltage dependence of channel block by intracellular cations, such as polyamines and Mg2+. Here, we identify a previously unknown mechanism of inward rectification in Kir4.1/Kir5.1 channels in the absence of these endogenous blockers. This novel intrinsic rectification originates from the voltage-dependent behavior of Kir4.1/Kir5.1, which is generated by the flux of potassium ions through the channel pore; the inward K+-flux induces the opening of the gate, whereas the outward flux is unable to maintain the gate open. This gating mechanism powered by the K+-flux is convergent with the gating of PIP2 because, at a saturating concentration, PIP2 greatly reduces the inward rectification. Our findings provide evidence of the coexistence of two rectification mechanisms in Kir4.1/Kir5.1 channels: the classical inward rectification induced by blocking cations and an intrinsic voltage-dependent mechanism generated by the K+-flux gating.  相似文献   

4.
H. Stoeckel  K. Takeda 《Protoplasma》2002,220(1-2):0079-0087
Summary.  Plasmalemmal ionic currents from enzymatically isolated protoplasts of suspension-cultured tobacco ‘Bright Yellow-2’ cells were investigated by whole-cell patch-clamp techniques. In all protoplasts, delayed rectifier outward K+ currents having sigmoidal activation kinetics, no inactivation, and very slow deactivation kinetics were activated by step depolarization. Tail current reversal potentials were close to equilibrium potential EK when external [K+] was either 6 or 60 mM. Several channel blockers, including external Ba2+, niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, inhibited this outward K+ current. Among the monovalent cations tested (NH4 +, Rb+, Li+, Na+), only Rb+ had appreciable permeation (PRb/PK = 0.7). In addition, in 60 mM K+ solutions, a hyperpolarization-activated, time-dependent, inwardly rectifying K+ current was observed in most protoplasts. This inward current activated very slowly, did not inactivate, and deactivated quickly upon repolarization. The tail current reversal potential was very close to EK, and other monovalent cations (NH4 +, Rb+, Li+, Na+) were not permeant. The inward current was blocked by external Ba2+ and niflumic acid. External Cs+ reversibly blocked the inward current without affecting the outward current. The amplitude of the inward rectifier K+ current was generally small compared to the amplitude of the outward K+ current in the same cell, although this was highly variable. Similar amplitudes for both currents occurred in only 4% of the protoplasts in control conditions. Microfilament-depolymerizing drugs shifted this proportion to about 12%, suggesting that microfilaments participate in the regulation of K+ currents in tobacco ‘Bright Yellow-2’ cells. Received December 7, 2001; accepted April 15, 2002; published online July 4, 2002 RID="*" ID="*" Correspondence and reprints: Pharmacologie et Physicochimie, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 74 route du Rhin, BP 24, 67401 Illkirch, France. Abbreviations: TBY-2 Tobacco ‘Bright Yellow-2’; DHCB dihydrocytochalasin B; IKin inward rectifier K+ current; IKout outward K+ current; MFs microfilaments; MTs microtubules; NPPB 5-nitro-2-(3-phenylpropylamino)-benzoic acid.  相似文献   

5.
In developing seed ofVicia faba L., solutes imported throughthe phloem of the coats move symplastically from the sieve elementsto a specialized set of cells (the thin-walled parenchyma transfercells) for release to the seed apoplast. Potassium (K+) is thepredominant cation released from the seed coats. To elucidatethe mechanisms of K+ efflux from seed coat to seed apoplast,whole-cell currents across the plasma membranes of protoplastsof thin-walled parenchyma transfer cells were measured usingthe whole-cell patch-clamp technique. Membrane depolarizationelicited a time-dependent and an instantaneous outward current.The reversal potential (ER of the time-dependent outward currentwas close to the potassium equilibrium potential (EK and itshifted in the same direction as EK upon changing the externalK+ concentration, indicating that this current was largely carriedby an efflux of K+. The activation of the time-dependent outwardK+ current could be well fitted by two exponential componentsplus a constant. The instantaneous outward current could alsobe carried by K+ efflux as suggested by ion substitution experiments.These K+ outward rectifier currents elicited by membrane depolarizationare probably too small to represent the mechanism for the normalK+ efflux from seed coat cells. Membrane hyperpolarization morenegative than –80 mV activated a time-dependent inwardcurrent. K+ influx was responsible for the inward current asthe current reversed at membrane voltage close to EK and shiftedin the same direction as EK when external [K+] was varied. Activationof this K+inward rectifier current was well fitted with twoexponential components plus a constant. A regulating functionfor this current is suggested. Key words: Potassium outward rectifier, potassium inward rectifier, transfer cell protoplast, seed coat, Vicia faba L  相似文献   

6.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   

7.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   

8.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   

9.
The voltage- and time-dependent properties of whole-cell, multi-channel (outside-out), and single channel inwardly-rectifying K+ currents were studied using adult and neonatal rat, and embryonic chick ventricular myocytes. Inward rectification of the current-voltage relationship was found in the whole-cell and single channel measurements. The steady-state single channel probability of opening decreased with hyperpolarization from EK, as did the mean open time, thereby explaining the time-dependent inactivation of the macroscopic current. Myocytes dialysed with a Mg++-free K+ solution (to remove the property of inward rectification) displayed a quasi-linear current-voltage relationship. The outward K+ currents flowing through the modified inward rectifier channels were able to be blocked by the local anesthetic and anti-arrhythmic agent, lidocaine.  相似文献   

10.
The minK protein induces a slowly activating voltage-dependent potassium current when expressed in Xenopus oocytes. We have used macroscopic minK currents to determine the open channel current-voltage relationship for the channel, and have found that the minK current is inwardly rectifying. The channel passes inward current at least 20fold more readily than outward current. Both rat and human minK exhibit this property. The rectification of minK is similar to that reported for a slow component of the cardiac delayed rectifier, strengthening the hypothesis that minK is responsible for that current.We would like to thank Drs. Steve Goldstein and Chris Miller for the artificial rat minK gene, and Dr. Rick Swanson for the human minK construct. This work was supported by NIH grant GM-48851 to L.K.K.  相似文献   

11.
The mechanism of inward rectification was examined in cell-attached and inside-out membrane patches from Xenopus oocytes expressing the cloned strong inward rectifier HRK1. Little or no outward current was measured in cell-attached patches. Inward currents reach their maximal value in two steps: an instantaneous phase followed by a time-dependent "activation" phase, requiring at least two exponentials to fit the time- dependent phase. After an activating pulse, the quasi-steady state current-voltage (I-V) relationship could be fit with a single Boltzmann equation (apparent gating charge, Z = 2.0 +/- 0.1, n = 3). Strong rectification and time-dependent activation were initially maintained after patch excision into high [K+] (K-INT) solution containing 1 mM EDTA, but disappeared gradually, until only a partial, slow inactivation of outward current remained. Biochemical characterization (Lopatin, A. N., E. N. Makhina, and C. G. Nichols, 1994. Nature. 372:366-396.) suggests that the active factors are naturally occurring polyamines (putrescine, spermidine, and spermine). Each polyamine causes reversible, steeply voltage-dependent rectification of HRK1 channels. Both the blocking affinity and the voltage sensitivity increased as the charge on the polyamine increased. The sum two Boltzmann functions is required to fit the spermine and spermidine steady state block. Putrescine unblock, like Mg2+ unblock, is almost instantaneous, whereas the spermine and spermidine unblocks are time dependent. Spermine and spermidine unblocks (current activation) can each be fit with single exponential functions. Time constants of unblock change e-fold every 15.0 +/- 0.7 mV (n = 3) and 33.3 +/- 6.4 mV (n = 5) for spermine and spermidine, respectively, matching the voltage sensitivity of the two time constants required to fit the activation phase in cell-attached patches. It is concluded that inward rectification in intact cells can be entirely accounted for by channel block. Putrescine and Mg2+ ions can account for instantaneous rectification; spermine and spermidine provide a slower rectification corresponding to so-called intrinsic gating of inward rectifier K channels. The structure of spermine and spermidine leads us to suggest a specific model in which the pore of the inward rectifier channel is plugged by polyamines that enter deeply into the pore and bind at sites within the membrane field. We propose a model that takes into account the linear structure of the natural polyamines and electrostatic repulsion between two molecules inside the pore. Experimentally observed instantaneous and steady state rectification of HRK1 channels as well as the time-dependent behavior of HRK1 currents are then well fit with the same set of parameters for all tested voltages and concentrations of spermine and spermidine.  相似文献   

12.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44–1.1 mM) or putrescine (∼0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between −80 (the reversal potential) and ∼−40 mV during voltage steps applied from −110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between −40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to −50 mV after short depolarizing steps (>0 mV), a transient increase appeared in outward currents at −50 mV. Since the peak amplitude depended on the fraction of Mg2+-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (−110 to −80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg2+-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 μM, an estimated free spermine level during whole-cell recordings) and putrescine (300 μM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

13.
Single inward rectifier K+ channels were studied in Xenopus laevis embryonic myocytes. We have characterized in detail the channel which is most frequently observed (Kir) although we routinely observe three other smaller current levels with the properties of inward rectifier K+ channels (Kir(0.3), Kir(0.5) and Kir(0.7)). For Kir, slope conductances of inward currents were 10.3, 20.3, and 27.9 pS, in 60, 120 and 200 mM [K+] o respectively. Extracellular Ba2+ blocked the normally high channel activity in a concentration-dependent manner (K A = 7.8 μm, −90 mV). In whole-cell recordings of inward rectifier K+ current, marked voltage dependence of Ba2+ block over the physiological range of potentials was observed. We also examined current rectification. Following step depolarizations to voltages positive to E K , outward currents through Kir channels were not observed even when the cytoplasmic face of excised patches were exposed to Mg2+-free solution at pH 9.1. This was probably also true for Kir(0.3), Kir(0.5) and Kir(0.7) channels. We then examined the possibility of modulation of Kir channel activity and found neither ATP nor GTP-γS had any effect on Kir channel activity when added to the solution perfusing the cytoplasmic face of a patch. Kinetic analysis revealed Kir channels with a single open state (mean dwell time 72 msec) and two closed states (time constants 1.4, 79 msec). These results suggest that the native Kir channels of Xenopus myocytes have similar properties to the cloned strong inward rectifier K+ channels, in terms of conductance, kinetics and barium block but does show some differences in the effects of modulators of channel activity. Furthermore, skeletal muscle may contain either different inward rectifier channels or a single-channel type which can exist in stable subconductance states. Received: 16 September 1996/Revised: 14 March 1997  相似文献   

14.
The neuropeptide Phe-Met-Arg-Phe-amide (FMRFa) dose dependently (ED50 = 23 nM) activated a K+ current in the peptidergic caudodorsal neurones that regulate egg laying in the mollusc Lymnaea stagnalis. Under standard conditions ([K+]o = 1.7 mM), only outward current responses occurred. In high K+ salines ([K+]o = 20 or 57 mM), current reversal occurred close to the theoretical reversal potential for K+. In both salines, no responses were measured below −120 mV. Between −120 mV and the K+ reversal potential, currents were inward with maximal amplitudes at ∼−60 mV. Thus, U-shaped current–voltage relations were obtained, implying that the response is voltage dependent. The conductance depended both on membrane potential and extracellular K+ concentration. The voltage sensitivity was characterized by an e-fold change in conductance per ∼14 mV at all [K+]o. Since this result was also obtained in nearly symmetrical K+ conditions, it is concluded that channel gating is voltage dependent. In addition, outward rectification occurs in asymmetric K+ concentrations. Onset kinetics of the response were slow (rise time ∼650 ms at −40 mV). However, when FMRFa was applied while holding the cell at −120 mV, to prevent activation of the current but allow activation of the signal transduction pathway, a subsequent step to −40 mV revealed a much more rapid current onset. Thus, onset kinetics are largely determined by steps preceding channel activation. With FMRFa applied at −120 mV, the time constant of activation during the subsequent test pulse decreased from ∼36 ms at −60 mV to ∼13 ms at −30 mV, confirming that channel opening is voltage dependent. The current inactivated voltage dependently. The rate and degree of inactivation progressively increased from −120 to −50 mV. The current is blocked by internal tetraethylammonium and by bath- applied 4-aminopyridine, tetraethylammonium, Ba2+, and, partially, Cd2+ and Cs+. The response to FMRFa was affected by intracellular GTPγS. The response was inhibited by blockers of phospholipase A2 and lipoxygenases, but not by a cyclo-oxygenase blocker. Bath-applied arachidonic acid induced a slow outward current and occluded the response to FMRFa. These results suggest that the FMRFa receptor couples via a G-protein to the lipoxygenase pathway of arachidonic acid metabolism. The biophysical and pharmacological properties of this transmitter operated, but voltage-dependent K+ current distinguish it from other receptor-driven K+ currents such as the S-current- and G-protein-dependent inward rectifiers.  相似文献   

15.
The patch-clamp technique with two pipettes was used to record single delayed K+ channels (cell-attached electrode) and to control the potential and the composition of the intracellular compartment (whole-cell electrode). With 30 microM cAMP in the cell and physiological potassium concentrations inside and outside the patch, a channel carrying an outward current was characterized. Its open probability was very low and the channel was recorded in only 5% of patches under control conditions. Increasing intracellular cAMP increased the probability of finding a channel in a patch 10-fold. The channel had the characteristics expected of a delayed rectifier channel. The time-course of its ensemble average resembled the whole-cell current in the same cell. The current-voltage relationship exhibited inward rectification, with a slope conductance of 20 pS in the linear portion and a reversal potential close to EK. Both the open- and the closed-time distributions were described by the sum of two exponentials, suggesting a complicated gating scheme involving two closed states and two open states. The beta-adrenergic stimulation did not change the conductance of the channel, but increased its probability of opening.  相似文献   

16.
HL‐1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K+ channels. Our aim was to identify and characterize inward rectifier K+ channels in HL‐1 cells. External Ba2+ (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole‐cell patch‐clamp recordings. The reversal potential of the Ba2+‐sensitive current shifted with external [K+] as expected for K+‐selective channels. The slope conductance of the inward Ba2+‐sensitive current increased with external [K+]. The apparent Kd for Ba2+ was voltage dependent, ranging from 15 µM at ?150 mV to 148 µM at ?75 mV in 120 mM external K+. This current was insensitive to 10 µM glybenclamide. A component of whole‐cell current was sensitive to 150 µM 4,4′‐diisothiocyanatostilbene‐2,2′‐disulfonic acid (DIDS), although it did not correspond to the Ba2+‐sensitive component. The effect of external 1 mM Cs+ was similar to that of Ba2+. Polymerase chain reaction using HL‐1 cDNA as template and primers specific for the cardiac inward rectifier Kir2.1 produced a fragment of the expected size that was confirmed to be Kir2.1 by DNA sequencing. In conclusion, HL‐1 cells express a current that is characteristic of cardiac inward rectifier K+ channels, and express Kir2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. J. Cell. Physiol. 225: 751–756, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
BackgroundThe ATP-sensitive K+ (K(ATP)) channel is found in a variety of tissues extending from the heart and vascular smooth muscles to the endocrine pancreas and brain. Common to all K(ATP) channels is the pore-forming subunit Kir6.x, a member of the family of small inwardly rectifying K+ channels, and the regulatory subunit sulfonylurea receptor (SURx). In insulin secreting β-cells in the endocrine part of the pancreas, where the channel is best studied, the K(ATP) channel consists of Kir6.2 and SUR1. Under physiological conditions, the K(ATP) channel current flow is outward at membrane potentials more positive than the K+ equilibrium potential around ?80 mV. However, K(ATP) channel kinetics have been extensively investigated for inward currents and the single-channel kinetic model is based on this type of recording, whereas only a limited amount of work has focused on outward current kinetics.MethodsWe have estimated the kinetic properties of both native and cloned K(ATP) channels under varying ionic gradients and membrane potentials using the patch-clamp technique.ResultsAnalyses of outward currents in K(ATP) and cloned Kir6.2ΔC26 channels, alone or co-expressed with SUR1, show openings that are not grouped in bursts as seen for inward currents. Burst duration for inward current corresponds well to open time for outward current.ConclusionsOutward K(ATP) channel currents are not grouped in bursts regardless of membrane potential, and channel open time for outward currents corresponds to burst duration for inward currents.  相似文献   

19.
Inward-rectifier K channel: using macroscopic voltage clamp and single- channel patch clamp techniques we have identified the K+ channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K+ channel is an inward rectifier (Kir) and is the major component of macroscopic conductance of intact cells. The current- voltage relationship of BLM in intact cells of isolated epithelia, mounted in miniature Ussing chambers (bathed on apical and basolateral sides in normal amphibian Ringer solution), showed pronounced inward rectification which was K(+)-dependent and inhibited by Ba2+, H+, and quinidine. A 15-pS Kir channel was the only type of K(+)-selective channel found in BLM in cell-attached membrane patches bathed in physiological solutions. Although the channel behaves as an inward rectifier, it conducts outward current (K+ exit from the cell) with a very high open probability (Po = 0.74-1.0) at membrane potentials less negative than the Nernst potential for K+. The Kir channel was transformed to a pure inward rectifier (no outward current) in cell- attached membranes when the patch pipette contained 120 mM KCl Ringer solution (normal NaCl Ringer in bath). Inward rectification is caused by Mg2+ block of outward current and the single-channel current-voltage relation was linear when Mg2+ was removed from the cytosolic side. Whole-cell current-voltage relations of isolated principal cells were also inwardly rectified. Power density spectra of ensemble current noise could be fit by a single Lorentzian function, which displayed a K dependence indicative of spontaneously fluctuating Kir channels. Conclusions: under physiological ionic gradients, a 15-pS inward- rectifier K+ channel generates the resting BLM conductance in principal cells and recycles potassium in parallel with the Na+/K+ ATPase pump.  相似文献   

20.
We have characterized the inward rectifying background potassium current, iK1, of canine cardiac Purkinje myocytes in terms of its reversal potential, voltage activation curve, and "steady-state" current-voltage relation. The latter parameter was defined from the difference current between holding currents in the presence and absence of 20 mM cesium. Our data suggest that iK1 rectification does not arise exclusively from voltage-dependent gating or exclusively from voltage-dependent blockade by internal magnesium ions. The voltage activation curve constructed from tail currents fit to a Boltzmann two-state model predicts less outward current than is actually observed. The magnesium-dependent rectification due to channel blockade is too fast to account for the time-dependent gating of iK1 that gives rise to the tail currents. We propose a new model of rectification that assumes that magnesium blockade of the channel occurs simultaneously with voltage-dependent gating. The new model incorporates the kinetic schema elaborated by Matsuda, H. (1988. J. Physiol. 397:237-258) to explain the appearance of subconducting states of the iK1 channel in the presence of blocking ions. That schema suggested that iK1 channels were composed of three parallel pores, each of which could be blocked independently. In our model we considered the consequences of partial blockade of the channel. If the channels are partially blocked at potentials where normally they are mostly gated closed, and if the partially blocked channels cannot close, then blockade will have the paradoxical result of enhancing the current carried by iK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号