首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was demonstrated for the first time that filamentous bacteriophage Cflt, which contains single-stranded DNA, can incorporate its genome into that of its host. Evidence in support of the incorporation was obtained from a Southern blot hybridization analysis of DNA isolated from Cflt-lysogenized cells. DNAs from different Cflt-lysogenized cells were purified, and the integration patterns were compared. Because all integration patterns were identical and only one fragment in Cflt replicative-form DNA was missing, it appears that the integration was site specific. Only one complement of viral DNA was integrated per host chromosome. To determine the attachment site on the viral DNA, the physical map of EcoRI, XhoI, SstII, and BglII on Cflt DNA was constructed. Based on this physical map and a Southern blot hybridization analysis of lysogen DNA with these restriction endonucleases, we demonstrated that DNA sequences from all regions of the Cflt genome were represented in the integrated viral sequences. The attachment site on the viral genome was located at 69.2 to 73.8 min on the Cflt DNA.  相似文献   

2.
An extract prepared from Escherichia coli cells infected with phi chi 174 bacteriophage was capable of incorporating dTTP into phage-specific DNAs in vitro. The synthesized DNAs were associated with proteins and sedimented with S values of 20, 50, and 90 in a sucrose gradient sedimentation. DNA isolated from 20S material was open circular replicative form (RF), DNA in 50S material was replicative-form DNA with an extended single-stranded viral DNA that ranged up to one genome in length, and DNA in 90S material consisted of circular and linear single-stranded viral DNA of full genome length and single-stranded viral DNA shorter than full genome length. Pulse and pulse-chase experiments indicated that 90S material derived from 50S material.  相似文献   

3.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

4.
R A Robinson  D J O'Callaghan 《Cell》1983,32(2):569-578
The integration patterns of viral DNA sequences in three hamster embryo cell lines independently derived by transformation with equine herpesvirus type 1 (EHV-1) have been investigated by DNA blot hybridization analyses for the restriction enzymes Eco RI, Bgl II, Xba I and Bam HI with 32P-labeled selected DNAs from a collection of cloned EHV-1 restriction enzyme fragments as probes. These EHV-1-transformed cell lines contained subgenomic portions of the viral genome in an integrated state at multiple sites in the host genome. At least one copy of a viral DNA sequence mapping colinearly from 0.32 to 0.38 map units within the EHV-1 genome was common among these three EHV-1 transformed cell lines. The 0.32–0.38 viral DNA sequence was maintained stably even after 125 cell passages, whereas sequences from other positions in the EHV-1 genome were lost progressively during continued cell passage. The significance of the findings that these oncogenically transformed cell lines harbor a specific region of the EHV-1 genome is discussed with regard to stable maintenance of the oncogenically transformed state.  相似文献   

5.
D M Xu  D Stoltz 《Journal of virology》1991,65(12):6693-6704
Evidence is presented in support of a chromosomal location for sequences homologous to polydnavirus DNA in the ichneumonid parasitoid Hyposoter fugitivus. In this study, four different viral genome segments were cloned and used as probes against genomic DNA extracted from male parasitoids and digested with a variety of restriction enzymes. Each probe typically identified a single off-size fragment (OSF) in the case of enzymes not cutting viral genome segments, while two OSFs were generated by enzymes cutting at one and two sites. While extra OSFs were occasionally observed, these were invariably found to be due to the presence of polymorphic restriction sites in flanking chromosomal DNA. Analysis of these data suggests that a single, stable chromosomal locus exists for sequences homologous to each viral genome segment; the data also indicate that viral and cognate parasitoid genomic DNAs are largely if not entirely colinear.  相似文献   

6.
Unintegrated linear and circular forms of baboon endogenous type C virus M7 DNA were prepared from M7-infected cells by chromatography on hydroxyapatite columns, and the circular DNAs were purified in cesium chloride-ethidium bromide equilibrium density gradients. The circular DNAs were linearized by digestion with EcoRI, which had a unique site on the viral DNA. The linearized DNA was then inserted into lambda gtWES. lambda B at the EcoRI site and cloned in an approved EK2 host. Molecularly cloned full-length M7 DNA was restricted with BamHI, and the resulting five subgenomic fragments were then subcloned individually in plasmid pBR322. The organization and sites of integration of the approximately 100 copies of M7 DNA sequences endogenous to baboons were investigated by digesting the DNA with restriction enzymes and identifying the virus-specific fragments by hybridization to labeled probes made by using the molecularly cloned full-length and subgenomic fragments of the viral DNA. We found that most of the endogenous sequences had sizes and organizations similar to those of the unintegrated viral DNA and therefore approximately similar to the RNA of the infectious virus. A few of the multiple sequences had deletions in the 3' end (envelope region), and some of the sequences either lacked or contained modified BamHI restriction sites on the 5' end of the viral DNA. The endogenous viral DNA sequences were nontandem, uninterrupted, and colinear with the DNA of the infectious virus, and they were integrated at different sites in the baboon DNA, like the M7 proviral DNA sequences acquired upon infection.  相似文献   

7.
Genomic termini of equine herpesvirus 1.   总被引:5,自引:3,他引:2       下载免费PDF全文
After cell infection with the equine herpesvirus 1 (EHV-1), the termini of the linear double-stranded DNA genome fuse to form circular forms. To investigate the mechanisms in the generation and cleavage of such replicative-form DNAs, the genomic termini, the fusion of termini from replicative-form molecules, and the junction between the short and long genome segments have been analyzed by restriction mapping, blot hybridizations, cloning, and sequencing. The data suggest that the genome ends are not redundant and that the genomic termini are fused in replicative intermediates via 3' single-base extensions at the termini of the unique long segment (UL) and terminal repeat (TR). Adjacent to the EHV-1 termini are AT and gamma sequence elements highly conserved among different herpesviruses. We propose that both of these sequence elements are important for the cleavage of EHV-1 replicative forms.  相似文献   

8.
Expression of Campoletis sonorensis virus (CsV) in parasitized Heliothis virescens larvae was investigated by Northern blot analysis of poly(A)+ mRNAs isolated from H. virescens larvae at various times after parasitization by C. sonorensis. At least 12 CsV mRNAs were detected in parasitized H. virescens larvae. Injection of nonparasitized H. virescens larvae with purified CsV resulted in a pattern of viral mRNAs similar to that observed in naturally parasitized larvae. With CsV DNA restriction fragments which contained expressed sequences, individual CsV mRNAs were mapped to the superhelical DNAs of the viral genome. Two gene-specific probes, which consisted of cloned S1 nuclease-protected restriction fragments, each hybridized to several CsV superhelical DNAs, suggesting that some CsV genes may be shared on several superhelical DNAs. Cloned restriction fragments containing sequences which flank the expressed sequences also hybridized to numerous CsV superhelical DNAs. Some CsV proteins were identified by in vitro translation of hybrid-selected CsV mRNAs.  相似文献   

9.
The complete DNA genomes of four distinct human papilloma viruses (human papilloma virus subtype 1a [HPV-1a], HPV-1b, HPV-2a, and HPV-4) were molecularly cloned in Escherichia coli, using the certified plasmid vector pBR322. The restriction endonuclease patterns of the cloned HPV-1a and HPV-1b DNAs were similar to those already published for uncloned DNAs. Physical maps were constructed for HPV-2a DNA and HPV-4 DNA, since these viral DNAs had not been previously mapped. By using the cloned DNAs, the genomes of HPV-1a, HPV-2a, and HPV-4 were analyzed for nucleotide sequence homology. Under standard hybridization conditions (Tm = --28 degrees C), no homology was detectable among the genomes of these papilloma viruses, in agreement with previous reports. However, under less stringent conditions (i.e., Tm = --50 degrees C), stable DNA hybrids could be detected between these viral DNAs, indicating homologous segments in the genomes with approximately 30% base mismatch. By using specific DNA fragments immobilized on nitrocellulose filters, these regions of homology were mapped. Hybridization experiments between radiolabeled bovine papilloma virus type 1 (BPV-1) DNA and the unlabeled HPV-1a, HPV-2a, or HPV-4 DNA restriction fragments under low-stringency conditions indicated that the regions of homology among the HPV DNAs are also conserved in the BPV-1 genome with approximately the same degree of base mismatch.  相似文献   

10.
Purified virion DNA of about 200 kilobase pairs of tupaia herpesvirus strain 2 was cleaved with EcoRI or HindIII restriction endonuclease. Restriction fragments representing the complete viral genome including both termini were inserted into the EcoRI, HindIII, and EcoRI-HindIII sites of the bacterial plasmid pAT153. Restriction maps for the restriction endonucleases EcoRI and HindIII were constructed with data derived from Southern blot hybridizations of individual viral DNA fragments or cloned DNA fragments which were hybridized to either viral genome fragments or recombinant plasmids. The analysis revealed that the tupaia herpesvirus genome consists of a long unique sequence of 200 kilobase pairs and that inverted repeat DNA sequences of greater than 40 base pairs do not occur, in agreement with previous electron microscopic data. No DNA sequence homology was detectable between the tupaia herpesvirus DNA and the genome of murine cytomegalovirus, which was reported to have a similar structure. In addition, seven individual isolates of tupaia herpesvirus were characterized. The isolates can be grouped into five strains by their DNA cleavage patterns.  相似文献   

11.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

12.
The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data.  相似文献   

13.
The cellular sites of integration of avian sarcoma virus (ASV) have been examined in clones of duck embryo cells infected with the Bratislava 77 strain of ASV using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled ASV complementary DNA probes. DNA prepared from 11 clones of duck embryo cells infected with the Bratislava 77 strain of ASV was digested with the restriction enzymes HpaI, which cleaves once within the viral genome, and Hind III, which cleaves twice within the viral genome, and the virus-cell DNA juncture fragments were resolved by agarose gel electrophoresis. Analysis of the virus-cell junctures present in individual ASV-infected duck embryo clones revealed that all clones contain at least one copy of nondefective proviral DNA with some clones containing as many as 5 to 6 copies of proviral DNA. A comparison of the virus-cell juncture fragments present in different ASV-infected clones showed that each clone contains a unique set of virus-cell junctures. These data suggest that ASV DNA can integrate at multiple sites within the duck embryo cell genome and that these sites appear to be different as defined by digestion with the restriction enzymes HpaI and HindIII.  相似文献   

14.
Construction and characterization of new coliphage M13 cloning vectors   总被引:21,自引:0,他引:21  
J C Hines  D S Ray 《Gene》1980,11(3-4):207-218
New single-stranded DNA cloning vectors have been constructed by the insertion of additional DNA fragments into a HaeII restriction site in the bacteriophage M13 duplex replicative form (RF). These inserts into the M13 genome bring a single restriction sites useful for cloning, including PstI, XorII, EcoRI, SstI, XhoI, KpnI, and PvuII. Drug-resistance genes cloned into M13 include the beta-lactamase (bla) gene and the chloramphenicol acetyl transferase (cat) gene. These vectors provide a convenient means of easily obtaining the separated strands of a cloned duplex DNA fragment by cloning the fragment in each of the two possible orientations. Standard cloning techniques commonly applied to double-stranded DNAs can be utilized to insert foreign DNAs into the duplex RF DNAs of these vectors. Cells transformed by chimeric DNAs extrude filamentous phage particles carrying a circular single-stranded copy of the chimeric viral strand. Because M13-infected cells continue to grow and divide, cells can be transformed to yield either plaques or drug-resistant colonies. Specific inserts are readily detected by plaque hybridization techniques using an appropriate probe. Chimeric viral single strands from virus particles in the supernatant of small volumes of infected cultures can be rapidly and sensitively analyzed by agarose gel electrophoresis to determine the size of an insert.  相似文献   

15.
The arrangement of simian virus 40 sequences in the DNA of transformed cells.   总被引:156,自引:0,他引:156  
M Botchan  W Topp  J Sambrook 《Cell》1976,9(2):269-287
High molecular weight DNA, isolated from eleven cloned lines of rat cells independently transformed by SV40, was cleaved with various restriction endonucleases. The DNA was fractionated by electrophoresis through agarose gels, denatured in situ, transferred directly to sheets of nitrocellulose as described by Southern (1975), and hybridized to SV40 DNA labeled in vitro to high specific activity. The location of viral sequences among the fragments of transformed cell DNA was determined by autoradiography. The DNAs of seven of the cell lines contained viral sequences in fragments of many different sizes. The remaining four cell lines each contain a single insertion of viral DNA at a different chromosomal location. The junctions between viral and cellular sequences map at different places on the viral genome.  相似文献   

16.
F K Yoshimura  R A Weinberg 《Cell》1979,16(2):323-332
Both linear (form III) and closed circular (form I) viral DNAs obtained from mouse cells infected with Moloney murine leukemia virus were cleaved by Sal I, Sma I, Bam HI and Pst I restriction endonucleases. DNA fragments generated by these cleavages were ordered with respect to the 5' and 3' ends of the RNA genome by several techniques, including comparisons of the DNA fragments from cleavages of the linear and closed circular forms, double digestions using different combinations of enzymes and the use of an RNA probe specific for the 3' end. DNA from Hirt extractions of infected cells yielded a discrete species of linear viral DNA whose size was determined by agarose gel electrophoresis to be 5.7 x 10(6) daltons. In the course of characterizing the closed circular DNA, we observed two form I DNA molecules. The larger molecule was the same size as the linear DNA. The second molecule migrated faster on agarose gels and was the predominant species of the two closed circular DNAs. Using the restriction endonuclease maps which we derived, we demonstrate that this novel form I DNA is a smaller homogeneous species of viral DNA, missing about 600 nucleotides found in the linear and larger closed circular DNA molecules. We have localized the site of this missing DNA piece to be at either one or both ends of the linear viral DNA.  相似文献   

17.
Three species of unintegrated viral DNAs were found in permissive cells infected with baboon type C virus. The major species was a 9.0-kilobase (kb) linear DNA that was infectious. A restriction endonuclease map of this DNA was constructed and oriented with respect to the viral RNA. The linear DNA had a 0.6-kb sequence repeated at each terminus. These terminal repeat sequences were required for infectivity of the viral DNA. The minor species of the unintegrated viral DNAs were covalently closed circles of 9.0 and 8.4 kb. The smaller circle was in two- to threefold excess over the larger circle. The difference appeared to be that the smaller circle lacked one of the two 0.6-kb repeat sequences found in the larger circle. Restriction endonuclease maps of the integrated viral DNAs were constructed, and the sequences on both viral DNA and cellular DNA that are involved in integration were determined. The integrated viral DNA map was identical to that of the unintegrated infectious 9.0-kb linear DNA. Therefore, a specific site in the terminal repeat sequence of the viral DNA was used to integrate with the host cell DNA. The sizes of the cellular DNA fragments were different from clone to clone but stable with cell passage. Therefore, many sites in the cell DNA can recombine with the viral DNA.  相似文献   

18.
The physical state of the JC virus (JCV) genome was studied in two clonal cell lines (clones 2 and 7) derived from a tissue culture cell line (HJC-15) established from a hamster brain tumor induced by JCV. Saturation-hybridization and reassociation kinetic analyses, using in vitro (32)P-labeled JCV DNA, indicated that clone 7 and 2 cells contain 9 to 10 and 4 to 5 copies per cell, respectively, of all or most of the viral genome. Both cell DNAs were analyzed by using the Southern blotting procedure with three restriction endonucleases: XhoI, which does not cleave JCV DNA; EcoRI, which cleaves once; and HindIII, which cleaves three times. With each DNA, a variety of JCV-specific DNA fragments were detected. The following conclusions are possible: (i) JCV DNA is integrated into cell DNA in both clonal lines; (ii) both clonal lines contain multiple copies of the viral genome integrated in a tandem head-to-tail orientation; (iii) neither clonal line contains detectable free-form I, II, or III JCV DNA; (iv) each clonal line contains multiple independent sites of JCV DNA integration; and (v) most or all of the sites of integration on the cellular or the viral genome, or both, are different in clone 7 DNA than in clone 2 DNA. Thus, although both clone 7 and clone 2 cells were established from the HJC-15 tumor cell line, they differ in the copy number and integration pattern of JCV DNA.  相似文献   

19.
The closed circular form of the endogenous squirrel monkey type D retrovirus (SMRV) was molecularly cloned in a bacteriophage vector. The restriction map of the biologically active clone was determined and found to be identical to that of the parental SMRV linear DNA except for the deletion of one long terminal repeat. Restriction enzyme analysis and Southern blotting indicated that the SMRV long terminal repeat was approximately 300 base pairs long. The SMRV restriction map was oriented to the viral RNA by using a gene-specific probe from baboon endogenous virus. Restriction enzyme digests of a variety of vertebrate DNAs were analyzed for DNA sequence homology with SMRV by using the cloned SMRV genome as a probe. Consistent with earlier studies, multiple copies of SMRV were detected in squirrel monkey DNA. Related fragments were also detected in the DNAs from other primate species, including humans.  相似文献   

20.
The genome of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 rescued by passage on transformed permissive monkey lines (see accompanying paper [Y. Gluzman et al., J. Virol. 24:534-540, 1977]) was analyzed by restriction endonuclease cleavage mapping to obtain biochemical evidence that the rescue of the ts phenotype results from recombination with the resident SV40 genome of the transformed cell. It was demonstrated that the endonuclease R. HaeIII cleavage site, which is located at 0.9 map unit in the standard viral genome (and which is in the proximity of the known map position of the tsD lesion), is missing in the DNAs of the parental tsD202 virus and of three independent revertants of tsD202. In contrast, this cleavage site was shown to be present in the DNAs of four out of five independently derived rescued D202 populations and in the DNA of the SV40 strain, 777, used to transform the monkey cells. Comparison of the endonuclease R. Hin(II + III) cleavage patterns of SV40 strain 777 DNA and tsD202 DNA revealed differences in the electrophoretic mobilities of Hin fragments A, B, and F. However, the corresponding Hin fragments from all four rescued D202 genomes were identical in their mobilities to those of tsD202 DNA, indicating that these regions of the rescued D202 genome are characteristic of the tsD202 parent. We conclude, therefore, that the genome of the rescued D202 virus is a true recombinant, since it contains restriction endonuclease cleavage sites characteristic of both parents, the endogenous resident SV40 genome of the transformed monkey cells and the exogenous tsD202 mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号