首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Severe magnesium (Mg) deficiency changed mineral homeostasis, increased lipid peroxidation, and reduced Mg2+/Ca2+ antagonism. To investigate whether the pathobiochemical effects directly correlate with the degree of Mg deficiency or whether there might be a threshold for significant alterations, diets with 70, 110, 208, 330, and 850 ppm of Mg were fed to growing Wistar rats. After feeding the diets for 0, 10, 20, and 30 days, parameters of free radical action (malondialdehyde and vitamin E content), mineral content (Mg, Ca, Fe, Zn) in various tissues (liver, spleen, heart, kidney, muscle) and plasma parameters (Mg, Ca, Fe, Zn, alanine- and aspartate-aminotransferase, tumor necrosis factor- [TNF-] were analyzed. The tissue Mg content was either unchanged or only slightly reduced in severe Mg deficiency. The iron (Fe) content rose when the extracellular Mg2+ concentration was below 0.25 mmol/L. There was a close positive correlation between the tissue Fe and the malondialdehyde content and a negative correlation between the malondialdehyde and the vitamin E content. Below the threshold of about 0.25 mmol/L of plasma Mg2+ concentration, elevated zinc (Zn) concentrations were found in liver and kidney as well as in plasma increased transaminases and TNF-. The same threshold could be observed for the increase of tissue calcium (Ca) content, except in the kidney where calcifications were found already in less severe Mg deficiency. Concerning changed mineral homeostasis with subsequent lipid peroxidation and membrane damage, plasma Mg2+ concentrations must be below 0.25 mmol/L: above this threshold effects of Mg deficiency alone can be compensated.  相似文献   

2.
Iron deficiency and visceral leishmaniasis are serious problems of public health. The aim of this study was to evaluate the effect of iron deficiency, induced by the iron chelator desferrioxamine, on the course of the infection by Leishmania chagasi in BALB/c mice. Our data show that the iron chelator caused significant reduction in hemoglobin concentration of treated mice and reduction in parasite load in spleen and liver. Significant differences were not observed in the production of IFN-gamma and IL-4 among the experimental groups. In conclusion, the data reported in this paper suggest that iron deficiency may favor the host. If there is not enough iron available to the parasite, its multiplication may be reduced and infection attenuated.  相似文献   

3.
Effect of dietary iron deficiency on mineral levels in tissues of rats   总被引:3,自引:0,他引:3  
To clarify the influence of iron deficiency on mineral status, the following two synthetic diets were fed to male Wistar rats: a control diet containing 128 micrograms iron/g, and an iron-deficient diet containing 5.9 micrograms iron/g. The rats fed the iron-deficient diet showed pale red conjunctiva and less reactiveness than the rats fed the control diet. The hemoglobin concentration and hematocrit of the rats fed the iron-deficient diet were markedly less than the rats fed the control diet. The changes of mineral concentrations observed in tissues of the rats fed the iron-deficient diet, as compared with the rats fed the control diet, are summarized as follows: . Iron concentrations in blood, brain, lung, heart, liver, spleen, kidney, testis, femoral muscle, and tibia decreased; . Calcium concentrations in blood and liver increased; calcium concentration in lung decreased; . Magnesium concentration in blood increased; . Copper concentrations in blood, liver, spleen and tibia increased; copper concentration in femoral muscle decreased; . Zinc concentration in blood decreased; . Manganese concentrations in brain, heart, kidney, testis, femoral muscle and tibia increased. These results suggest that iron deficiency affects mineral status (iron, calcium, magnesium, copper, zinc, and manganese) in rats.  相似文献   

4.
The mineral content (zinc, iron, magnesium, and calcium) in the liver, spleen, and thymus of male Balb/C mice was analyzed. Animals were fed, over 21 d, diets enriched with corn oil (FCO diet) or olive oil (FOO diet) (5% addition to standard pellet, w/w). Olive oil with predominant oleic acid (C18:1, n-9) had a quite different composition than corn oil, in which linoleic acid (C18:2, n-6) prevails. The zinc and magnesium tissue concentrations were not changed in either group. The calcium concentration in liver as well as the calcium concentration in spleen increased in mice fed both the FCO and FOO diets. Furthermore, mice fed both the FOO and FCO diets had increased spleen iron concentration. Mice fed the FCO diet had increased thymus calcium concentration compared to controls. The results show the effect of diets with unsaturated, particularly polyunsaturated fatty acids, on the calcium and iron concentration in some organs.  相似文献   

5.
Chronic stress exposure is associated with diverse negative health outcomes. It has been hypothesised that stress may also negatively affect the body's mineral status. This study investigates the association between chronic stress and long-term mineral concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P) and zinc (Zn) in scalp hair among elementary school girls. Complete information on child-reported stress estimates (Coddington Life Events Scale (CLES)), hair cortisone and hair mineral concentrations, and predefined confounders in the stress–mineral relationship (i.e. age, body mass index, physical activity, diet, hair colour and parental education) was provided cross-sectionally for 140 girls (5–10 years old). The relationship between childhood stress measures (predictor) and hair minerals (outcome) was studied using linear regression analysis, adjusted for the abovementioned confounders. Hair cortisone concentrations were inversely associated with hair mineral concentrations of Ca, Mg, Zn and the Ca/P ratio. Children at risk by life events (CLES) presented an elevated Ca/Mg ratio. These findings were persistent after adjustment for confounders. This study demonstrated an independent association between chronic stress measures and hair mineral levels in young girls, indicating the importance of physiological stress–mineral pathways independently from individual or behavioural factors. Findings need to be confirmed in a more heterogeneous population and on longitudinal basis. The precise mechanisms by which stress alters hair mineral levels should be further elucidated.  相似文献   

6.
In this investigation, the concentration levels of hair elements of calcium, iron, and zinc were measured in pregnant women from Tianjin metropolis, China. The subjects were 93 cases of pregnant women who had been suffering from calcium, iron, or zinc deficiency judged by blood tests at the mid-term of the second trimester or early in the third trimester. Of these 93 cases, 82 subjects had their hair element levels measured when the blood tests were conducted. Then, they were supplied with mineral element nutrients of gluconic acidic zinc (noted as Zn-nutrient), gluconic acidic calcium (Ca-nutrient), or/and ferrous sulfate (Fe-nutrient) which were correspondent to the deficient element(s) for more than 2 mo before 84 subjects returned to hospital for further diagnoses and had their hair element levels measured for the second time. Finally, in the third trimester or nearparturient phase, 13 subjects had their hair element levels measured again. Except for the deficiencies of calcium, iron, or/and zinc, these subjects were all healthy without symptoms of any diseases. The concentrations of hair Ca, Fe, and Zn were measured by X-ray fluorescence (XRF) spectrometry. These concentrations of the three hair elements measured at three different times were statistically analyzed. From the analyses, it was clear that hair concentrations of Ca, Fe, and Zn could reflect the effects of supplementation. Also, the mutual resistant effects among Ca-, Fe-, and Zn-nutrients were revealed. However, by appropriate combination, the mutual resistant effects could be depressed and mutual promotional effects might be enhanced. Finally, it could be concluded that mineral element deficiencies might be convalesced by adequate compensations of mineral element nutrients.  相似文献   

7.
Mineral levels such as Cu, Fe, Zn, Ca and Mg in organs of spontaneously hypertensive osteogenic disorder Shionogi rat (SHR-od) were compared with those of normotensive osteogenic disorder Shionogi rat (ODS). The effect of vitamin C deficiency was also examined for both strains. Cu levels in kidney of SHR-od increased to 2.2 times and 5.0 times that of ODS at 6-week old and 30-week old, respectively, although the effect of vitamin C deficiency was not observed in Cu levels of five organs examined. The effect of vitamin C deficiency appeared in the change in the other mineral levels almost similarly for both SHR-od and ODS rats at 30-week old; the decrease of Fe in liver, spleen and lung, whereas the increase of Zn in liver, Ca in heart and Mg in spleen, respectively.  相似文献   

8.
Calcium deficiency was induced in hydroponically grown 1.5-years-old coffee plants with 12–14 pairs of leaves. Calcium was given in the form of Ca(NO3)2: 5, 2.5, 0.1, 0.01 and 0 mM. After 71 days of Ca-treatment root and shoot as well as total biomass were decreased by severe Ca-deficiency. However, a stronger decrease was observed for shoot growth as revealed by the increase in the root/shoot ratio. New leaves were affected showing decreases in the total leaf area and in Leaf Area Duration (LAD). After 91 days of deficiency, leaf protein concentration decreased (by about 45%) in the top leaves while nitrate reductase activity (NRA) and NO3 content showed no significant changes. Total nitrogen and mineral concentrations (P, K, Ca, Mg and Na) were also determined in leaves and roots. With the decrease in calcium concentration in Ca-deficiency conditions, we observed concomitant increases in the concentrations of K+, Mg2+ and Na+ in leaves (maximal changes of 32% for K+, 96% for Mg2+ and 438% for Na+) and in roots (108% for K+, 86% for Mg2+ and 38% for Na+). Accordingly, the ratio between elements changed, including the ratio N/P, showing a non-equilibrium in the balance of nutrients. Significant correlations were obtained between Ca2+ concentration and some photosynthetic parameters. Ca-deficiency conditions would increase the loss of energy as expressed by the rise in aE and decrease the photochemical efficiency, which confirms the importance of this element in the stabilization of chlorophyll and in the maintenance of good photochemical efficiency at PS II level.Abbreviations Chl Chlorophyll - Fv/Fm ratio of variable to maximal fluorescence - LAD leaf area duration - LHC II light harvesting complex of PS II - NRA nitrate reductase activity - PC photosynthetic capacity - PS II photosystem II - P680 reaction center of PS II - qN non-photochemical quenching - qE high-energy dependent quenching - qp photochemical quenching - SLA specific leaf area  相似文献   

9.
The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.  相似文献   

10.
The effects of simultaneous changes of calcium, magnesium, iron, copper, and zinc concentrations were evaluated in normal human T and B lymphocytes, cultured in cation-depleted media. Optimal concentrations for thymidine incorporation (TI) in both cell populations were Fe and Zn 15 μM and Cu 5 μM; for t cells Ca 2 mM and Mg 4 mM; for B cells Ca 4 mM and Mg 6 mM. TI decreased with increasing molarity of cations and the decrease was particularly apparent with Cu. Minimal amounts of Ca and Mg (0.5 mM) were necessary for growth, even in presence of optimal concentrations of Fe, Cu, and Zn. Fe and Cu showed synergistic stimulatory effects at low concentrations and synergistic inhibitory effects at high concentrations. Antagonism between Fe and Zn, Cu and Zn, and Ca and Zn was also demonstrated. CD4/CD8 increased with PHA stimulation in presence of Zn, and decreased with ConA stimulation in presence of Zn or Fe. The results demonstrate: (1) the relationship and interdependence of Fe, Cu, and Zn concentrations in modulating the growth of normal lymphocytes; (2) the stimulatory effects of Fe on B cells and Zn on CD8 positive cells; (3) the inhibitory effect of Cu at concentrations lower than those of Fe and Zn; (4) the requirement of Ca and Mg in certain concentration and ratio for the action of the other cations; and (5) the Ca and Mg requirement for the growth of B cells higher than T cells.  相似文献   

11.
The effect of riboflavin and (or) pyridoxine deficiency and repletion on tissue iron content was studied in rats. The iron content in liver, spleen, and kidney and plasma iron concentration of riboflavin deficient (RD) rats was lower, but hematocrit was not. In pyridoxine deficient (PD) rats versus control rats, the iron content in liver was significantly higher but not in spleen and kidney. In PD rats hematocrit was lower but plasma iron concentration was not. Although combined riboflavin and pyridoxine deficient (CD) rats had lower iron content in liver and spleen compared with control rats, these values were intermediate between those of RD rats and PD rats. After RD and PD rats were repleted, the iron content in liver, spleen, and kidney returned to that of control rats, and the hematological indices were improved significantly. These results suggest that riboflavin and pyridoxine deficiency may impair the absorption and utilization of iron and may result in altered tissue iron content.  相似文献   

12.
Objective Study the effects of acute and chronic restraint stress on the whole blood concentrations of iron (Fe), zinc (Zn), calcium (Ca), and magnesium (Mg) in mice. Materials and methods Single or repeat restraints were applied to mice to induce acute or chronic stress. The levels of elements in whole blood were determined by flame atomic absorption spectrometry. Results The levels of Fe, Zn, Ca, and Mg in blood in the acute-stress group were 351, 5.05, 60, and 44 μg/ml, respectively, and those in the corresponding control group were 391, 5.90, 59, and 45 μg/ml, respectively. The levels of blood Fe, Zn, Ca, and Mg in the chronic-tress group were 291, 3.62, 59, and 40 μg/ml, respectively, and those in the corresponding control group were 393, 4.82, 48, and 43 μg/ml, respectively. The levels of Fe and Zn in the blood of both the acute-stress and the chronic-stress groups were significantly lower (P <0.05) than that in the control groups. The Ca level in whole blood was significantly (P <0.05) higher in the chronic-stress group than that in the control group. Conclusion Acute and chronic restraint stress can cause changes in blood levels of Fe and Zn in mice.  相似文献   

13.
To clarify the influence of dietary tin deficiency on growth and mineral status, the following two different synthetic diets were fed to male Wistar rats: group 1--a diet containing 1.99 micrograms tin/g; group 2--a diet containing 17 ng tin/g. The rats in group 2 showed poor growth, lowered response to sound, and alopecia, with decreased food efficiency compared with rats in group 1. The changes of mineral concentrations in tissues observed in group 2, compared with group 1, are summarized as follows: calcium concentration in lung increased; magnesium concentration in lung decreased; iron concentrations in spleen and kidney increased; iron concentration in femoral muscle decreased; zinc concentration in heart decreased; copper concentrations in heart and tibia decreased; manganese concentrations in femoral muscle and tibia decreased. These results suggest that tin may be essential for rat growth.  相似文献   

14.
Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg?1), Fe (85 mg kg?1) and protein (250 g kg?1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat.  相似文献   

15.
To clarify the influence of dietary tin deficiency on growth and mineral status, the following two different synthetic diets were fed to male Wistar rats: group 1—a diet containing 1.99 μg tin/g; group 2—a diet containing 17 ng tin/g. The rats in group 2 showed poor growth, lowered response to sound, and alopecia, with decreased food efficiency compared with rats in group 1. The changes of mineral concentrations in tissues observed in group 2, compared with group 1, are summarized as follows: calcium concentration in lung increased; magnesium concentration in lung decreased; iron concentrations in spleen and kidney increased; iron concentration in femoral muscle decreased; zinc concentration in heart decreased; copper concentrations in heart and tibia decreased; manganese concentrations in femoral muscle and tibia decreased. These results suggest that tin may be essential for rat growth.  相似文献   

16.
In Coxsackievirus B3 (CB3) infection, the heart and pancreas are major target organs and, as a general host response, an associated immune activation and acute phase reaction develops. Although iron (Fe), copper (Cu), and zinc (Zn) are involved in these responses, sequential trace element changes in different target organs of infection have not been studied to date. In the present study, Fe, Cu, and Zn were measured through inductively coupled plasma mass spectrometry (ICP-MS) in the plasma, liver, spleen, heart, and pancreas during the early phase (d 1 and 3) of CB3 infection in female Balb/c mice. The severity of the infection was assessed through clinical signs of disease and histopathology of the heart and pancreas, including staining of CD4 and CD8 cells in the pancreas. During infection, the concentrations of Fe, Cu, and Zn changed in the plasma, liver, and pancreas, but not in the spleen and heart. The changes in plasma Cu, Zn, and Fe seemed to be biphasic with a decrease at d 1 that turned into increased levels by d 3. Cu showed similar biphasic changes in the liver, spleen, and pancreas, whereas, for Zn and Fe, this pattern was only evident in the liver. In the pancreas, the reverse response occurred with pronounced decreases in Fe (23%, p < 0.05) and Zn (64%, p < 0.01) at d 3. Although the pathophysiological interpretation of these findings requires further research, the sequential determination of these elements may be of clinical value in enterovirus infections in deciding the stage of disease development.  相似文献   

17.
Trypanosoma brucei brucei, the infectious agent of the disease known as Nagana, is a pathogenic trypanosome occurring in Africa, where it causes significant economic loss to domesticated livestock. Although many studies on the histopathology of organs of mice infected with T. b. brucei have been reported, little work has been done regarding gene expression in these organs in infected mice. In this paper, we describe the use of cDNA microarray to determine gene expression profiles in the liver and spleen of mice infected with T. b. brucei (STIB 920) at peak parasitaemia (12 days after infection). Our results showed that a total of 123 genes in the liver and 389 genes in the spleen were expressed differentially in T. b. brucei infected mice. In contrast, however, in an acute infection in mice caused by Trypanosoma brucei evansi, a species genetically related to T. b. brucei, 336 genes in the liver and 190 genes in the spleen were expressed, differentially, indicating that the liver of mice was more affected by the acute T. b. evansi infection whilst the spleen was more affected by the subacute T. b. brucei infection. Our results provide a number of possible reasons why mice infected with T. b. evansi die sooner than those infected with T. b. brucei: (1) mice infected with T. b. evansi may need more stress response proteins to help them pass through the infection and these are probably excessively consumed; (2) proliferating cell nuclear antigen was more down-regulated in the liver of mice infected with T. b. evansi, which indicated that the inhibition of proliferation of hepatocytes in mice infected with T. b. evansi might be more severe than that in T. b. brucei infection; and (3) more hepatocyte apoptosis occurred in the mice infected with T. b. evansi and this might be probably the most important reason why mice died sooner than those infected with T. b. brucei. Studies of the changes in the gene expression profile in the liver and spleen of mice infected with T. b. brucei may be helpful in understanding the mechanisms of pathogenesis in Nagana disease at the molecular level. By comparing the gene profiles of the liver and spleen of mice infected with T. b. brucei with T. b. evansi, we have identified a number of factors that could explain the differences in pathogenesis in mice infected with these two African trypanosomes.  相似文献   

18.
Male tule elk (Cervus elaphus nannodes) are susceptible to high rates of antler breakage in Owens Valley, California. We hypothesized that a mineral deficiency in the diet predisposed male elk to antler breakage. We analyzed elk antler, liver, and forage samples to identify mineral imbalances. We compared the mineral content of livers and antlers from elk in Owens Valley to samples taken from tule elk at Grizzly Island Wildlife Area, a population experiencing normal rates (<5%) of antler breakage. Antler and liver samples were collected from 1989 to 1993, and in 2002, and were tested for calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), phosphorus (P), sulfur (S), and zinc (Zn). Mineral levels from antler and liver samples were compared to reference values established for elk and deer. We also compared the mineral content of elk forage in Owens Valley, collected in 2002-03, to dietary reference values established for cattle. In antlers, Ca, Fe, and Mg levels were higher in Owens Valley elk than in Grizzly Island elk, although all mineral levels were lower than reference values established for deer antlers. In liver samples, Cu levels from elk in Owens Valley were lower than those from Grizzly Island and lower than minimum reference values; liver Ca and Mo levels were higher in elk from Owens Valley than in those from Grizzly Island. Compared to reference values, elk forage in Owens Valley had high levels of Ca and Mo, and low levels of Cu, P, and Zn. Mineral analyses from antlers, livers, and forage suggest that tule elk in the Owens Valley are Cu and/or P deficient. High levels of Mo and Ca may exacerbate Cu and P deficiencies, respectively. Bone fragility is a symptom of both deficiencies, and an imbalance in Cu, P, or a combination of both, may predispose male tule elk in the Owens Valley to antler breakage.  相似文献   

19.
Saradhi  P. Pardha  Alia  Vani  B. 《Plant and Soil》1993,155(1):465-468
The concentration of proline in shoots of rice (Oryza sativa) seedlings raised in distilled water was about 3.3 times higher than in the seedlings raised in modified B5 medium. The shoots of seedlings raised in B5 medium which was depleted of calcium, iron, magnesium or potassium had a higher concentration of proline than those grown in standard B5 medium. The shoots of seedlings raised in distilled water with iron had a lower level of proline than those in distilled water. These results suggest that iron deficiency leads to high proline accumulation.The electron transport activity of mitochondria from shoots of etiolated seedlings raised in distilled water or iron-depleted B5 medium was significantly lower than those from equivalent seedlings raised with an iron source. As suppression in mitochondrial electron transport leads to an increase in NADH/NAD+ ratio, we propose that the prime cause of the proline accumulation during iron deficiency is to readily maintain NADH/NAD+ ratio.  相似文献   

20.
Background and objectivesLead (Pb) has been reported to disturb the metabolism of essential elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and zinc (Zn) in vivo. This study focused on the relationship between various dose of Pb and the essential elements.Methods50 healthy male C57BL/6 mice underwent oral administration of 0.2 mL lead acetate trihydrate solution (0, 20, 100, 500, and 1000 mg Pb/day/kg body weight) for 3 days. The concentrations of Pb and four essential elements (Ca, Zn, Fe and Mg) in the blood, kidney, liver, bone and brain were quantified with inductively coupled plasma mass spectrometry.ResultsVarious doses of Pb led to significant increases in the contents of Ca, Fe and Zn in the liver, and decreased contents of Mg and Fe in the blood in a dose-dependent pattern. The Pb dose of 20 mg/kg reduced the concentration of bone Ca, which did not continue to show an obvious decline with continued increases in the oral Pb dose. Pb also caused alterations in the Mg distribution pattern, and decreased the correlation of Mg, Ca and Zn in the brain, both findings were dose-dependent. In addition to the changes in metallomics, the related oxidative stress was exacerbated, but no significant changes were detected in hepatic and renal histopathological lesions after a short period of Pb exposure.ConclusionsThis study contributes to a thorough analysis of the Pb-poisoning mechanism, and indicates that the concentrations of essential elements could be used as sensitive toxicological indicators of Pb exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号