首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Circadian rhythms in noradrenergic (NE) and dopaminergic (DA) metabolites and in cyclic nucleotide production were measured in discrete regions of rat brain. A circadian rhythm was found in the concentration of the NE metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), in the hippocampus. No MHPG rhythm was found in frontal, cingulate, parietal, piriform, insular or temporal cortex, or in hypothalamus. Circadian rhythms in the concentration of the NE metabolite, 3,4-dihydroxyphenylglycol (DHPG), occurred in occipital and parietal cortex and hypothalamus, with no rhythm observable in temporal or insular cortex, hippocampus, pons-medulla or cerebellum. The 24-hr mean concentration of MHPG varied 3.5-fold, highest in cingulate and lowest in parietal, temporal and occipital cortex. The 24-hr mean concentration of DHPG varied 6-fold, highest in hypothalamus and lowest in parietal cortex. Circadian rhythms in the concentration of the DA metabolite, homovanillic acid (HVA), were found in olfactory tubercle, amygdala and caudate-putamen, but not in nucleus accumbens. A circadian rhythm in the concentration of the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), occurred in nucleus accumbens, but not in olfactory tubercle or caudate-putamen. The mean 24-hr concentration of HVA was highest in caudate-putamen, intermediate in nucleus accumbens, and lowest in olfactory tubercle and amygdala. The mean 24-hr concentration of DOPAC was highest in nucleus accumbens and lower in olfactory tubercle and caudate-putamen. Circadian rhythms were found in the concentration of cyclic GMP (cGMP) in all regions measured except parietal cortex. The mean 24-hr concentration varied 128-fold, highest in nucleus accumbens, frontal poles, and hypothalamus and lowest in cingulate cortex. Circadian rhythms in cyclic AMP (cAMP) concentration were found in piriform, temporal, occipital, cingulate, and parietal cortex, amygdala and nucleus accumbens. No rhythms were found in frontal or insular cortex, hypothalamus, hippocampus, caudate-putamen or olfactory tubercle. The 24-hr mean cAMP concentration varied 4-fold, highest in parietal cortex and lowest in caudate-putamen and amygdala. Norepinephrine metabolites and dopamine metabolites were rhythmic in few regions. It is, therefore, unlikely that the rhythmicity measured in adrenergic receptors is, in general, a response to rhythmic changes in adrenergic transmitter release. The putative second messenger response systems, especially cGMP, were more often rhythmic. The rhythms in cGMP are parallel in form and region to those in the alpha 1-adrenergic receptor and may act as 2nd messenger for that receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Abstract: 3-Methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetic acid (DOPAC) rates of formation were used, respectively, to assess the dynamics of dopamine (DA) release and turnover in the rat frontal cortex, nucleus accumbens, and striatum. Assuming total (re)uptake and metabolism of released DA are relatively uniform among the three brain regions, a simplified two pool model was used to assess the metabolic fate of released DA. Under basal conditions, 3-MT formation was found to comprise >60% of total DA turnover (sum of 3-MT plus DOPAC rates of formation) in the frontal cortex, and not more than 15% in the nucleus accumbens and striatum. Haloperidol increased the 3-MT rate of formation to a greater extent in the frontal cortex than in the two other regions. Clozapine increased the 3-MT rate of formation in the frontal cortex and decreased it in the striatum. Both drugs increased DOPAC rate of formation in the frontal cortex and nucleus accumbens. It was elevated by haloperidol but not clozapine in the striatum. It is concluded that (1) O -methylation is a prominent step in the catabolism of DA in the frontal cortex under both physiological conditions and after acute treatment with antipsychotics, (2) 3-MT is the major metabolite of released DA in the frontal cortex and possibly also in the nucleus accumbens and striatum, (3) in contrast to the frontal cortex, most of the DOPAC in the nucleus accumbens and striatum appear to originate from intraneuronal deamination of DA that has not been released, (4) because presynaptic uptake and metabolism of DA give rise to DOPAC, whereas postsynaptic uptake and metabolism produced both DOPAC and 3-MT, the ratio of 3-MT to DOPAC rates of formation can be a useful index of reuptake inhibition.  相似文献   

3.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

4.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

5.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

6.
Neurotensin (NT) injected intracerebroventricularly in rat increases dopamine (DA) turnover in the corpus striatum and nucleus accumbens. Significant increases in 3,4-dihydroxyphenylacetic acid (DOPAC) levels occurred within 15 minutes after injection with peak levels at 60 minutes. The effect on NT on DOPAC and homovanillic acid (HVA) accumulation was dose-dependent at 3–100 μg. NT, like haloperidol, stimulated 3,4-dihydroxyphenylalanine (DOPA) accumulation in striatal neurons, in the presence of DOPA decarboxylase inhibitor, after injection of gamma-butyrolactone (GBL). NT had a similar stimulatory effect on DOPA levels in the accumbens while haloperidol (0.25 mg·kg?1) had no significant effect in this brain region. NT did not block the inhibitory effect of apomorphine on DOPA accumulation in both the striatum and accumbens, while haloperidol inhibited apomorphine effect in both regions. NT also failed to displace 3H-spiperone from DA receptors and the presence of NT in the binding assay did not alter the ability of DA to displace 3H-spiperone in either brain region. These experiments demonstrate that NT increases DA turnover in both the nigrostriatal and mesolimbic pathways.  相似文献   

7.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

8.
The effect of electrical foot shock stress on dopamine and DOPAC levels was examined in the frontal cortex, nucleus accumbens, striatum, substantia nigra and medial basal hypothalamus of rats. DA content did not change after stress in any of the structures analyzed except in the substantia nigra in which DA level decreased by about 35% following 20, 60 or 180 min of stress. DOPAC level did not change in the striatum, medial basal hypothalamus and substantia nigra, but increased in the frontal cortex and in n. accumbens by about 75% and 40%, respectively. Pretreatment with diazepam, but not with pentobarbital, prevented stress-induced increased in DOPAC levels.  相似文献   

9.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

10.
Interactions of the potent phencyclidine receptor agonist MK-801 with the dopaminergic system were examined in various brain regions in the rat. MK-801 increased dopamine (DA) metabolism in the pyriform cortex, entorhinal cortex, prefrontal cortex, striatum, olfactory tubercle, amygdala, and septum without affecting DA metabolism in the cingulate cortex and nucleus accumbens. In pyriform cortex and amygdala, MK-801 was more potent than phencyclidine at increasing DA metabolism. Local injections of MK-801 into ventral tegmental area and into the amygdala/pyriform cortex interface indicated that MK-801 may act at the cell body as well as the nerve terminal level to increase DA metabolism and that ongoing dopaminergic neuronal activity is a prerequisite for full drug action.  相似文献   

11.
左旋千金藤啶碱对不同脑区DA更新率的影响   总被引:1,自引:0,他引:1  
贺毓芳  黄开星 《生理学报》1995,47(5):429-434
应用HPLC-ECD测定DA更新率(DOPAC/DA),证明(-)SPD对黑质-纹状体、中脑-边缘系统、下丘脑-垂体DA神经系统的DA含量影响不明显,却显著增加DOPAC含量,并显著加强这些脑区的DA更新率,这可能是通过末梢的DA自身受体实现的。但(-)SPD既不显著影响中脑-前额叶和中脑-扣带回的DA含量,也不影响其中DOPAC含量,表明它不影响这些脑区DA更新率。这可能是由于皮层DA系统神经末  相似文献   

12.
The effect of electric footshocks and of exposure to environmental stimuli paired with electrical shocks upon the dopaminergic activity in various cortical and limbic areas of the rat were evaluated by measuring dihydroxyphenylacetic acid (DOPAC) levels in these areas. In animals exposed to a 20 min electric footshock session DOPAC concentrations were significantly increased in the antero-medial and sulcal frontal cortices, olfactory tubercle, nucleus accumbens and amygdaloid complex (by 66, 37, 28, 55 and 90% respectively). Re-exposure of rats to an environment where they had been shocked 24 h earlier induced an elevation of DOPAC content only in the anteromedial frontal cortex (by 47%). Plasma corticosterone levels were elevated in both situations. No change in serotonin or 5-hydroxyindolacetic acid content of these areas could be detected in either situation. The results show that electric footshocks and environmental stimuli associated to previous shocks both activate central dopaminergic systems, although the patterns of activation are different.  相似文献   

13.
The effects of the neuroleptics, sulpiride and haloperidol, on dopamine (DA) turnover were compared following the acute and chronic administration of these drugs alone or in combination with levodopa or apomorphine. In the acute treatment, the increase in DA metabolites in the striatum and nucleus accumbens was more marked in the haloperidol-treated rats than in the sulpiridetreated rats. Following the additional administration of levodopa, however, the potency of the neuroleptics in elevating DA metabolites was reversed. A low dose of apomorphine induced a marked reduction in the striatal DA metabolite levels by approximately 50%. When rats were pretreated with the neuroleptics, haloperidol was more effective in preventing an apomorphine-induced reduction in DA metabolites. On repeated administration of the neuroleptics, a tolerance occurred in the striatum and nucleus accumbens, but not in the prefrontal cortex. This differential development of tolerance was observed in the different brain regions and with the different drugs administered. These results suggests that the pharmacological mechanism of sulpiride on DA turnover differs from that of haloperidol.  相似文献   

14.
Specific tracer and maximal specific binding (Bmax) were determined in rat brain regions from radioactivity accumulation after intravenous administration of 3H N-n-propylnorapomorphine (NPA) or 3H spiperone at various specific activities. With NPA the highest Bmax-values (expressed in pmol.g-1 tissue) were found in the striatum (26 pmol.g-1) nucleus accumbens (about 27 pmol.g-1) and the olfactory tubercle (11 pmol.g-1). Saturable NPA binding was also found in the amygdaloid complex, medulla oblongata and inferior colliculi, but not in the frontal cortex. Bmax values for spiperone were high in the striatum (73 pmol.g-1), the nucleus accumbens (48 pmol.g-1), the olfactory tubercle (34 pmol.g-1) and the frontal cortex (18 pmol.g-1). A similar order was found for the tracer contents in these regions. There was no linear relationship between these contents and Bmax values. The possible implications of these findings and usefulness of NPA for brain imaging are discussed.  相似文献   

15.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

16.
A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of micro -opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats.  相似文献   

17.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

18.
Drugs of abuse, such as phencyclidine (PCP), methamphetamine (METH), and cocaine (COC) are known to affect several behaviors in rats, such as motor activity, stereotypy, and circling. In this study, we evaluated whether these drugs produce circling preferences in the presence or absence of unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the caudate nucleus. Adult male CD rats were lesioned with 10 μg 6-OHDA/site. Animals were dosed with PCP (15 mg/kg, ip), its congener, (+) MK-801 (0.15 mg/kg, ip), METH (2 mg/kg, ip), COC (60 mg/kg, ip), or apomorphine (0.2 mg/kg, ip). circling preference was recorded in control and lesioned rats for 2 h before animals were sacrificed to determine monoamine levels by HPLC/EC. In control animals, administration of these drugs produced 60–70% left circling. In, lesioned animals, these drugs produced 78–90% ipsilateral (toward the lesion) circling, except apomorphine, which produced 60–80% contralateral (away from the lesion) circling. Dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations significantly decreased ipsilaterally in lesioned caudate nucleus (CN) and substantia nigra (SN). However, no significant changes were observed in nucleus accumbens (NA) and olfactory tubercles (OT). These data demonstrate that drugs of abuse like PCP, its congener (+) MK-801, METH, and COC produce a greater preference to turn toward the left than the right, a finding similar to that found in human psychosis. Since 6-OHDA lesions enhanced the circling bias and depleted DA and its metabolites DOPAC and HVA, it also suggests that the dopaminergic system may be involved in the circling behavior.  相似文献   

19.
Enhanced dopamine metabolism after small lesions in the midbrain of the rat   总被引:4,自引:0,他引:4  
The effect of midbrain lesions on the metabolism of dopamine (DA) in various regions of the rat brain was investigated. Small midbrain lesions produced an acute increase in the levels of the acidic metabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum. Elevated levels of HVA were also found in the nucleus accumbens, tuberculum olfactorium and the cerebral cortex. The levels of HVA in the substantia nigra remained unaffected. The acute effect in the striatum of a complete transection of the ascending DA-pathway consists in an initial decrease of the levels of the metabolites followed by gradual increase. The results indicate that dopaminergic neurons do not act in an uncoordinated fashion, and that rapidly acting compensatory mechanisms are able to modify the output of this system.  相似文献   

20.
J C Fernando  B Hoskins  I K Ho 《Life sciences》1986,39(23):2169-2176
The role of brain dopamine (DA) in the enhancement of muscarinic antagonist-induced hyperactivity was investigated. The effects of atropine and scopolamine on the concentrations of DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), following DFP administration were determined. In control animals, atropine and scopolamine decreased the concentration of DA and increased the ratios of DOPAC/DA and HVA/DA in the striatum, but not in the N. accumbens - T. olfactorium (mesolimbic) area. Following a single dose of DFP, the two antimuscarinic drugs caused decreases of DA and further increases of the above ratios in both brain regions. However, following repeated DFP treatment for 2 weeks, these antimuscarinic drug-induced changes were observed only in the mesolimbic area, but not in the striatum. It is suggested that an increased DA turnover, indicated by elevated DOPAC/DA and HVA/DA ratios, underlies the muscarinic antagonist-induced hyperactivity. The well-known occurrence of muscarinic receptor down-regulation after DFP administration, could be responsible for the enhancement of the actions of muscarinic antagonists in DFP-treated animals. The observed differential effect on DA turnover in the two broad areas may involve both muscarinic and DA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号