首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus (EBV) is a gammaherpesvirus infecting the majority of the human adult population in the world. TLR2, a member of the Toll-like receptor (TLR) family, has been implicated in the immune responses to different viruses including members of the herpesvirus family, such as human cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. In this report, we demonstrate that infectious and UV-inactivated EBV virions lead to the activation of NF-kappaB through TLR2 using HEK293 cells cotransfected with TLR2-expressing vector along with NF-kappaB-Luc reporter plasmid. NF-kappaB activation in HEK293-TLR2 cells (HEK293 cells transfected with TLR2) by EBV was not enhanced by the presence of CD14. The effect of EBV was abrogated by pretreating HEK293-TLR2 cells with blocking anti-TLR2 antibodies or by preincubating viral particles with neutralizing anti-EBV antibodies 72A1. In addition, EBV infection of primary human monocytes induced the release of MCP-1 (monocyte chemotactic protein 1), and the use of small interfering RNA targeting TLR2 significantly reduced such a chemokine response to EBV. Taken together, these results indicate that TLR2 may be an important pattern recognition receptor in the immune response directed against EBV infection.  相似文献   

2.
Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus   总被引:17,自引:0,他引:17  
Aspergillus fumigatus causes life-threatening infections in patients with qualitative and quantitative defects in phagocytic function. Here, we examined the contribution of Toll-like receptor (TLR)-2, TLR4, the adapter protein MyD88, and CD14 to signaling in response to the three forms of A. fumigatus encountered during human disease: resting conidia (RC), swollen conidia (SC), and hyphae (H). Compared with elicited peritoneal macrophages obtained from wild-type and heterozygous mice, TLR2(-/-) and MyD88(-/-) macrophages produced significantly less tumor necrosis factor-alpha (TNFalpha) following A. fumigatus stimulation. In contrast, following stimulation with RC, SC, and H, TLR4(-/-) and CD14(-/-) macrophages exhibited no defects in tumor necrosis factor-alpha release. TLR2(-/-), TLR4(-/-), MyD88(-/-), and CD14(-/-) macrophages bound similar numbers of RC and SC compared with wild-type macrophages. RC, SC, and H stimulated greater activation of a nuclear factor kappa B (NFkappaB)-dependent reporter gene and greater release of tumor necrosis factor-alpha from the human monocytic THP-1 cell line stably transfected with CD14 compared with control cells stably transfected with empty vector. A. fumigatus stimulated NFkappaB-dependent reporter gene activity in the human embryonic kidney cell line, HEK293, only if the cells were transfected with TLR2. Moreover, activity increased when TLR2 and CD14 were co-transfected. Taken together, these data suggest that optimal signaling responses to A. fumigatus require TLR2 in both mouse and human cells. In contrast, a role for CD14 was found only in the human cells. MyD88 acts as a central adapter protein mediating signaling responses following stimulation with RC, SC, and H.  相似文献   

3.
In this study, we examined whether tyrosine phosphorylation of the Toll-IL-1 resistance (TIR) domain of Toll-like receptor (TLR) 4 is required for signaling and blocked in endotoxin tolerance. Introduction of the P712H mutation, responsible for lipopolysaccharide (LPS) unresponsiveness of C3H/HeJ mice, into the TIR domain of constitutively active mouse DeltaTLR4 and mutation of the homologous P714 in human CD4-TLR4 rendered them signaling-incompetent and blocked TLR4 tyrosine phosphorylation. Mutations of tyrosine residues Y674A and Y680A within the TIR domains of CD4-TLR4 impaired its ability to elicit phosphorylation of p38 and JNK mitogen-activated protein kinases, IkappaB-alpha degradation, and activation of NF-kappaB and RANTES reporters. Likewise, full-length human TLR4 expressing Y674A or Y680A mutations showed suppressed capacities to mediate LPS-inducible cell activation. Signaling deficiencies of the Y674A and Y680A TLR4s correlated with altered MyD88-TLR4 interactions, increased associations with a short IRAK-1 isoform, and decreased amounts of activated IRAK-1 in complex with TLR4. Pretreatment of human embryonic kidney (HEK) 293/TLR4/MD-2 cells with protein tyrosine kinase or Src kinase inhibitors suppressed LPS-driven TLR4 tyrosine phosphorylation, p38 and NF-kappaB activation. TLR2 and TLR4 agonists induced TLR tyrosine phosphorylation in HEK293 cells overexpressing CD14, MD-2, and TLR4 or TLR2. Induction of endotoxin tolerance in HEK293/TLR4/MD-2 transfectants and in human monocytes markedly suppressed LPS-mediated TLR4 tyrosine phosphorylation and recruitment of Lyn kinase to TLR4, but did not affect TLR4-MD-2 interactions. Thus, our data demonstrate that TLR4 tyrosine phosphorylation is important for signaling and is impaired in endotoxin-tolerant cells, and suggest involvement of Lyn kinase in these processes.  相似文献   

4.
ER-112022 is a novel acyclic synthetic lipid A analog that contains six symmetrically organized fatty acids on a noncarbohydrate backbone. Chinese hamster ovary (CHO)-K1 fibroblasts and U373 human astrocytoma cells do not respond to lipopolysaccharide (LPS) in the absence of CD14. In contrast, exposure to ER-112022 effectively induced activation of CHO and U373 cells under serum-free conditions. Expression of CD14 was not necessary for cells to respond to ER-112022, although the presence of soluble CD14 enhanced the sensitivity of the response. Several lines of evidence suggested that ER-112022 stimulates cells via the LPS signal transduction pathway. First, the diglucosamine-based LPS antagonists E5564 and E5531 blocked ER-112022-induced stimulation of CHO-K1, U373, and RAW264.7 cells. Second, ER-112022 was unable to activate C3H/HeJ mouse peritoneal macrophages, containing a mutation in Toll-like receptor (TLR) 4, as well as HEK293 cells, an epithelial cell line that does not express TLR4. Third, ER-112022 activated NF-kappaB in HEK293 cells transfected with TLR4/MD-2. Finally, tumor necrosis factor release from primary human monocytes exposed to ER-112022 was blocked by TLR4 antibodies but not by TLR2 antibodies. Our results suggest that ER-112022 and the family of lipid A-like LPS antagonists can functionally associate with TLR4 in the absence of CD14. Synthetic molecules like ER-112022 may prove to be valuable tools to characterize elements in the LPS receptor complex, as well as to activate or inhibit the TLR4 signaling pathway for therapeutic purposes.  相似文献   

5.
Aspergillus fumigatius is a ubiquitous saprophytic fungus that has become the most prevalent airborne fungal pathogen for immunocompromised patients during the last two decades. In this report we have analysed how macrophages recognize this microorganism. Using transfected human HEK 293 cells we demonstrate that NF-kappaB-dependent promoter activation triggered by A. fumigatus is mediated by Toll-like receptors TLR2 and TLR4, whereas no activation was observed in cells overexpressing other distinct TLR proteins (TLR1, TLR3, TLR5-10). Using macrophages derived from mice lacking TLR2 expression, expressing defective TLR4 or both we found that A. fumigatus conidia and hyphae induce NF-kappaB translocation, release of pro-inflammatory molecules, like TNFalpha, and the chemoattractant MIP-2 in a TLR2- and TLR4-dependent manner. Recognition of A. niger and A. fumigatus, was similar in terms of the parameters analysed, suggesting that pathogenic and non-pathogenic aspergilli are sensed by macrophages in a similar fashion. Finally, we found that recruitment of neutrophils is severely impaired in mice lacking both functional TLR2 and TLR4, but is less impaired in single TLR2- or TLR4-deficient mice, providing evidence that both receptors are required for an optimal immune response to Aspergillus in vivo.  相似文献   

6.
LPS, the primary constituent of the outer membrane of Gram-negative bacteria, is recognized by TLR4. Binding of TLR4 to LPS triggers various cell signaling pathways including NF-kappaB activation and reactive oxygen species (ROS) production. In this study, we present the data that LPS-induced ROS generation and NF-kappaB activation are mediated by a direct interaction of TLR4 with (NAD(P)H oxidase 4 (Nox) 4), a protein related to gp91phox (Nox2) of phagocytic cells, in HEK293T cells. Yeast two hybrid and GST pull-down assays indicated that the COOH-terminal region of Nox4 interacted with the cytoplasmic tail of TLR4. Knockdown of Nox4 by transfection of small interference RNA specific to the Nox4 isozyme in HEK293T cells expressing TLR4 along with MD2 and CD14 resulted in inhibition of LPS-induced ROS generation and NF-kappaB activation. Taken together, these results indicate that direct interaction of TLR4 with Nox4 is involved in LPS-mediated ROS generation and NF-kappaB activation.  相似文献   

7.
8.
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.  相似文献   

9.
We determine that OmpA of Shigella flexneri 2a is recognized by TLR2 and consequently mediates the release of proinflammatory cytokines and activates NF-κB in HEK 293 cells transfected with TLR2. We also observe that in RAW macrophages TLR2 is essential to instigate the early immune response to OmpA via NF-κB activation and secretion of cytokines and NO. Consistent with these results, TLR2 knockdown using siRNA abolishes the initiation of immune responses. Processing and presentation of OmpA depend on TLR2; MHCII presentation of the processed antigen and expression of CD80 significantly attenuated in TLR2 knockdown macrophages. The optimum production of IFN-γ by the macrophages:CD4(+) T cells co-culture depends on both TLR2 activation and antigen presentation. So, TLR2 is clearly recognized as a decisive factor in initiating host innate immune response to OmpA for the development of CD4(+) T cell adaptive response. Furthermore, we demonstrate in vivo that intranasal immunization of mice with OmpA selectively enhances the release of IFN-γ and IL-2 by CD4(+) T cells. Importantly, OmpA increases the level of IFN-γ production in Ag-primed splenocytes. The addition of neutralizing anti-IL-12p70 mAb to cell cultures results in the decreased release of OmpA-enhanced IFN-γ by Ag-primed splenocytes. Moreover, coincubation with OmpA-pretreated macrophages enhances the production of IFN-γ by OmpA-primed CD4(+) T cells, representing that OmpA may enhance IFN-γ expression in CD4(+) T cells through the induction of IL-12 production in macrophages. These results demonstrate that S. flexneri 2a OmpA may play a critical role in the development of Th1 skewed adaptive immune response.  相似文献   

10.
Toll-like receptors recognize specific patterns of microbial components and regulate the activation of both innate and adaptive immunity. TLR4 recognizes lipopolysaccharide (LPS) in monocytes/macrophages with the help of other molecules like CD14 and MD-2, which indicates that the functional LPS receptor forms a large complex. The functional relationship between the components has been the subject of debate, as have the modifications induced by the ligand in the expression of some of these components. Moreover, as for other members of this family of receptors, the possible direct interaction of receptors and their ligands is a matter of discussion. In this paper we address the question of whether the expression of some of the components influences the expression of the rest. Human monocytes in which CD14 has been downregulated through interference in the turnover of the molecule at the Golgi level, show normal membrane TLR4 expression, when compared with control cells. On the other hand, LPS alters membrane TLR4 expression by monocytes devoid of membrane CD14 only in the presence of human serum. The effect of serum is blocked by anti-CD14 monoclonal antibodies, which strongly suggests a functional role for soluble CD14/LPS complexes in the interaction with TLR4. Our data add information on the relationship between the components of the LPS receptor and the characteristics of the interaction of LPS and TLR4 in cells devoid of membrane CD14.  相似文献   

11.
We prepared enzymatically synthesized glycogen (ESG) with the same characteristics as natural glycogen and investigated whether the macrophage-stimulating activity of glycogen was related to Toll-like receptors (TLRs), which are important receptors for innate immunity. ESG induced no nuclear factor-kappa B (NF-κB) activity in TLR4/MD-2/CD14-expressed human embryonic kidney 293 (HEK293) reporter cells, whereas this polysaccharide did activate peritoneal exude cells (PECs) derived from TLR4-deficient mice at the same level as those from wild-type (WT) mice. Similarly, ESG did not activate HEK293 cells expressing TLR3, 5, 7, 8 or 9, suggesting that these TLRs were irrelevant to the activity of ESG. In contrast, ESG enhanced the NF-κB activity of TLR2-expressed HEK293 reporter cells in a concentration-dependent manner. Furthermore, the cell-stimulating activity of ESG was remarkably lower for PECs from TLR2-deficient mice compared with those from WT mice. The activity of ESG completely disappeared after treatment with a glycogen-degrading enzyme, indicating that the activity derived from ESG itself and not from contamination with canonical TLR2 ligands such as bacterial lipopeptides. Moreover, it was clarified by ELISA that ESG was directly bound to TLR2. Taken together, these results demonstrated that TLR2 directly recognizes glycogen and that the recognition activates immunocytes such as macrophages to enhance the production of nitric oxide and inflammatory cytokines. In addition, it was suggested that TLR2 could be involved in the glycogen activity in vivo. We propose that glycogen act as an activator to potentiate the host defense through TLR2 on the macrophage.  相似文献   

12.
13.
Leptospira interrogans is a spirochete that is responsible for leptospirosis, a zoonotic disease. This bacterium possesses an unusual LPS that has been shown to use TLR2 instead of TLR4 for signaling in human cells. The structure of its lipid A was recently deciphered. Although its overall hexa-acylated disaccharide backbone is a classical feature of all lipid A forms, the lipid A of L. interrogans is peculiar. In this article, the functional characterization of this lipid A was studied in comparison to whole parental leptospiral LPS in terms of cell activation and use of TLR in murine and human cells. Lipid A from L. interrogans did not coagulate the Limulus hemolymph. Although leptospiral lipid A activated strongly murine RAW cells, it did not activate human monocytic cells. Results obtained from stimulation of peritoneal-elicited macrophages from genetically deficient mice for TLR2 or TLR4 clearly showed that lipid A stimulated the cells through TLR4 recognition, whereas highly purified leptospiral LPS utilized TLR2 as well as TLR4. In vitro experiments with transfected human HEK293 cells confirmed that activation by lipid A occurred only through murine TLR4-MD2 but not through human TLR4-MD2, nor murine or human TLR2. Similar studies with parental leptospiral LPS showed that TLR2/TLR1 were the predominant receptors in human cells, whereas TLR2 but also TLR4 contributed to activation in murine cells. Altogether these results highlight important differences between human and mouse specificity in terms of TLR4-MD2 recognition that may have important consequences for leptospiral LPS sensing and subsequent susceptibility to leptospirosis.  相似文献   

14.
Recognition of microbial components by TLR2 requires cooperation with other TLRs. TLR6 has been shown to be required for the recognition of diacylated lipoproteins and lipopeptides derived from mycoplasma and to activate the NF-kappaB signaling cascade in conjunction with TLR2. Human TLR2 is expressed on the cell surface in a variety of cells, including monocytes, neutrophils, and monocyte-derived, immature dendritic cells (iDCs), whereas the expression profile of TLR6 in human cells remains obscure. In this study we produced a function-blocking mAb against human TLR6 and analyzed TLR6 expression in human blood cells and cell lines and its participation in ligand recognition. TLR6 was expressed, although at a lower level than TLR2, on the cell surface in monocytes, monocyte-derived iDCs, and neutrophils, but not on B, T, or NK cells. Confocal microscopic analysis revealed that TLR6 was colocalized with TLR2 at the plasma membrane of monocytes. Importantly, TLR2/6 signaling did not require endosomal maturation, and anti-TLR6 mAb inhibited cytokine production in monocytes and iDCs stimulated with synthetic macrophage-activating lipopeptide-2 or peptidoglycan, indicating that TLR6 recognized diacylated lipopeptide and peptidoglycan at the cell surface. In addition, TLR2 mutants C30S and C36S (Cys(30) and Cys(36) in TLR2 were substituted with Ser), which were expressed intracellularly in HEK293 cells, failed to induce NF-kappaB activation upon macrophage-activating lipopeptide-2 stimulation even in the presence of TLR6. Thus, coexpression of TLR2 and TLR6 at the cell surface is crucial for recognition of diacylated lipopeptide and peptidoglycan and subsequent cellular activation in human cells.  相似文献   

15.
The present study was designed to elucidate the role of Toll-like receptor (TLR) 2 and TLR4 in the host response to Cryptococcus neoformans. Both TLR2 knockout (KO) and TLR4KO mice produced interleukin-1beta (IL-1beta), IL-6, IL-12p40 and tumor necrosis factor-alpha (TNF-alpha) in sera and cleared this fungal pathogen from infected lungs at a comparable level to control littermate (LM) mice. Synthesis of these cytokines was not significantly different in the lungs of these KO mice and LM mice, although IL-1beta, IL-6 and IL-12p40 tended to be lower in TLR2KO, but not TLR4KO, mice than in controls. In addition, there was no significant reduction detected in the synthesis of IL-12 and TNF-alpha by bone marrow-derived dendritic cells from TLR2KO and TLR4KO mice upon stimulation with live yeast cells. Finally, HEK293 cells expressing either TLR2/dectin-1 or TLR4/MD2/CD14 did not respond to C. neoformans in the activation of nuclear factor kappa B (NFkappaB) detected by a luciferase assay. Our results suggest that TLR2 and TLR4 do not or only marginally contribute to the host and cellular response to this pathogen.  相似文献   

16.
We analysed the lipopolysaccharide (LPS)-recognition mechanism in cells expressing TLR4 and CD14 but lacking MD-2. When TLR4 and CD14 were transiently expressed in HEK293 cells, cell-surface expression of TLR4 was observed, although the expression level was lower than that in cells coexpressing MD-2. We found that membrane CD14-TLR4 complexes were formed in these cells in response to LPS stimulation even in the absence of MD-2 expression, although NF-kappaB-dependent reporter activity was not induced. A strong activation of NF-kappaB was observed when these cells were stimulated with LPS followed by soluble MD-2 in this order, even when excess LPS was removed after formation of the CD14-TLR4 complex by washing cells prior to sMD-2 addition. From these results, we propose an additional LPS-recognition mechanism. In cells expressing TLR4 and CD14 but lacking MD-2, LPS is first transferred to membrane CD14 with the aid of LPS binding protein, which leads to the formation of the TLR4-CD14 complex. Then, the binding of soluble MD-2 to this complex triggers the transmembrane signal transduction. Cells expressing TLR4 and CD14 but lacking MD-2, such as airway epithelial cells, may be activated in response to LPS by this mechanism.  相似文献   

17.
18.
The incidence of infections with Enterococcus faecium is increasing worldwide. TLRs have been implicated in the recognition of pathogens and the initiation of an adequate innate immune response. We here sought to determine the roles of MyD88, the common adaptor protein involved in TLR signaling, TLR2, TLR4, and CD14 in host defense against E. faecium peritonitis. MyD88 knockout (KO) mice demonstrated an impaired early response to E. faecium peritonitis, as reflected by higher bacterial loads in peritoneal fluid and liver accompanied by a markedly attenuated neutrophil influx into the abdominal cavity. In vitro, not only MyD88 KO macrophages but also TLR2 KO and CD14 KO macrophages displayed a reduced responsiveness to E. faecium. In accordance, transfection of TLR2 rendered human embryonic kidney 293 cells responsive to E. faecium, which was enhanced by cotransfection of CD14. TLR2 KO mice showed higher bacterial loads in peritoneal fluid after in vivo infection with E. faecium and a diminished influx of neutrophils, whereas CD14 KO mice had an unaltered host response. E. faecium phagocytosis and killing were not affected by MyD88, TLR2, or CD14 deficiency. TLR4 did not play a role in the immune response to E. faecium in vitro or in vivo. These data suggest that MyD88 contributes to the effective clearance of E. faecium during peritonitis at least in part via TLR2 and by facilitating neutrophil recruitment to the site of the infection.  相似文献   

19.
20.
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号