首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In laser based flow cytometers, UV excitation of Hoechst 33258 and propidium iodide (PI) or ethidium bromide (EB) is performed with 351/364 nm high power lines of UV-capable argon ion lasers, which are expensive and short-lived. In this paper we note for the first time that helium-cadmium lasers emitting 10 to 30 mW at 325 nm are even more superior for cell kinetic bivariate bromodeoxyuridine (BrdUrd)/Hoechst PI or EB cell cycle analysis. HeCd single laser UV excitation gives comparable CVs for cell cycle distributions, and almost normal G2M/G1 ratios of 1.9 to 2.0 for all cell cycles. This is shown for synchronous and asynchronous cell populations on a FACStar+ and an Ortho Cytofluorograf. Therefore we recommend helium-cadmium lasers as low-power, cheap, and long-lived UV excitation sources for the cytochemically simple but high resolution multiparameter BrdUrd-Hoechst cell kinetic analysis.  相似文献   

3.
Here we present unequivocal experimental proof that microscale cofactor- and membrane-less, direct electron transfer based enzymatic fuel cells do produce significant amounts of electrical energy in human lachrymal liquid (tears). 100 μm diameter gold wires, covered with 17 nm gold nanoparticles, were used to fashion three-dimensional nanostructured microelectrodes, which were biomodified with Corynascus thermophilus cellobiose dehydrogenase and Myrothecium verrucaria bilirubin oxidase as anodic and cathodic bioelements, respectively. The following characteristics of miniature glucose/oxygen biodevices operating in human tears were registered: 0.57 V open-circuit voltage, about 1 μW cm(-2) maximum power density at a cell voltage of 0.5 V, and more than 20 h operational half-life. Theoretical calculations regarding the maximum recoverable electrical energy can be extracted from the biofuel and the biooxidant, glucose and molecular oxygen, each readily available in human lachrymal liquid, fully support our belief that biofuel cells can be used as electrical power sources for so called smart contact lenses.  相似文献   

4.
In this study, a single chamber microbial fuel cell (MFC) with a rotating biocathode is developed to simultaneously remove chemical oxygen demand (COD) and nitrogen accompanying current production. Under continuous regime with a feeding COD/N ratio of 5:1, removal efficiencies of total organic carbon (TOC) and total nitrogen (TN) were 85.7 ± 7.4% and 91.5 ± 7.2%, respectively, and a maximum power output of 585 mW m?3 was yielded. In the batch tests, TN removal efficiencies for closed/open circuit were 82.1 ± 0.5% and 59.4 ± 3.3%, respectively. Cyclic voltammetry measurements demonstrated that the biocathode could efficiently catalyze nitrate reduction reaction. Autotrophic denitrification facilitated nitrogen removal using the electrode as electron donor. 16S rRNA-denaturing gradient gel electrophoresis (DGGE) was employed for community fingerprinting. At the biocathode the bacteria involved in nitrogen cycle predominated, of which the denitrifying bacteria were closely similar to Acidovorax sp. and/or Delftia sp. They were affiliated with the family Comamondaceae. The combination of rotating biological contactors with MFCs derives a promising opportunity for wastewater treatment with a low cost and high quality effluent.  相似文献   

5.
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein–protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red).  相似文献   

6.
The DNA-binding, fluorescent dye 7-amino-actinomycin D (7AAD) is efficiently excited by the 488 nm laser line commonly used in flow cytometry, but yields fluorescence emission further into the red spectrum than alternative DNA-specific fluorochromes. In this report, we show that the spectral properties of 7AAD allow single-laser analysis of DNA content and cell cycle simultaneously with two cell surface markers labeled with fluorescein (green)-and phycoerythrin (orange)-conjugated antibodies. The use of 7AAD makes three-color analysis practical and feasible, using the most widely available flow cytometric instruments. The power of this technique was demonstrated in two systems. Staining of human peripheral blood lymphocytes (PBL) with 7AAD was demonstrated to be dependent on cell activation and chromatin conformation; PHA-stimulated cells which have become activated and express IL 2 receptors had greater 7AAD fluorescence than nonactivated, IL 2 receptor-negative cells. Cell cycle analysis of mouse splenocytes stained with fluorescent antibodies to IgM and to Ly-1 demonstrated that the proportion of S and G2 phase cells in native spleen varies strongly among the subsets of cells identified with these markers. Of particular interest was the striking finding that the Ly-1+/IgM+ subset (Ly-1 B cells) is greatly enriched for cells in the S phase fraction. This is important because Ly-1 B cells have been associated with the production of autoantibodies, and is consistent with reports that these cells have a lymphoblastoid or a plasmablast morphology. We hypothesize that Ly-1 B cells may belong to a subset of in vivo activated cells which are either rapidly proliferating or are arrested in S phase.  相似文献   

7.
8.
Cell cycle analysis of senescent cultured human fibroblasts by flow cytofluorometry reveals an increased proportion of cells in the G 1 period. An increased variation as well as a slight decrease in cellular DNA contents were observed in both G 1 and G 2 + M senescent cells. Utilizing gated single parameter analysis, the increased cell volumes observed in these senescent fibroblasts were demonstrated to be present in G 1 as well as G2 + M cells.  相似文献   

9.
STED (stimulated emission depletion) microscopy is one of the most promising super‐resolution fluorescence microscopies,due to its fast imaging and ultra‐high resolution. In this paper, we present a dual‐color STED microscope with a single laser source. Polarization beam splitters are used to separate the output from a supercontinuum laser source into four laser beams, including two excitation beams (488, 635 nm) and two depletion beams (592, 775 nm). These four laser beams are then used to build a low cost dual‐color STED system to achieve a spatial resolution of 75 nm in cell samples.  相似文献   

10.
When stationary phase cells of the dimorphic yeast Candida albicans are diluted into fresh medium at pH 4.5 (low pH), they synchronously form ellipsoidal buds, but when diluted into the same medium at pH 6.7 (high pH), they synchronously form elongate mycelia. Using a perfusion chamber to monitor single cells, we have compared the rates of volume growth between budding and mycelium-forming cells. Results are presented which demonstrate that: (1) after release from stationary phase into medium of low or high pH, each original sphere grows in volume to the time of initial evagination, but does not grow subsequently; (2) successive budding on the original mother cell occurs without interruption resulting in continuous volume growth; however, an interruption in volume growth of the initial bud (B1) occurs before it in turn evaginates; and (3) the rate of volume growth of the first bud at low pH is identical to the rate of volume growth of the mycelium at high pH even though the surface to volume ratios are quite different. The last result is unexpected and is therefore considered in relation to cell wall deposition.  相似文献   

11.
Fluorescent in situ hybridization was combined with flow cytometry to detect the expression of the double-stranded-RNA-induced protein kinase (PKR) in single cells. Labeled anti-sense oligonucleotide was used to target the specific mRNA while the protein was targeted with an antibody. It was demonstrated that the PKR-mRNA signal could be protected through a lengthy immunostaining procedure. The expression pattern of the PKR-mRNA with respect to DNA content was shown to be comparable to that of 18S ribosomal RNA.  相似文献   

12.
For routine mass screening, the use of microarrays is hampered because one chip can only analyze one sample. 16S rRNA gene PCR products of several bacterial strains or mixtures thereof were consecutively loaded on a single electronic microarray and successfully analyzed using probes specific for the bacterial strains.  相似文献   

13.
Actin in transformed sarcoma 180 cells is composed of the nonmuscle β and γ species and of a third, more acidic stable variant termed ζ. Two-dimensional peptide analysis shows that ζ is similar to β actin, differing in the mobility of only one tryptic peptide. Several lines of evidence indicate that ζ is not a modified β-actin species. This third actin species comprises 20% of the total labeled actin, has the same molecular weight as the β and γ actins and has a different mobility in isoelectric focusing gels from that of the known a actins from skeletal, cardiac and vascular smooth muscle. Like β and γ actin, ζ can be extracted with the actin depolymerizing factor from slime mold. Two-dimensional gel electrophoresis (isoelectric focusing) of the 35S-methionine-labeled polypeptides synthesized by a single sarcoma 180 cell showed that all three major actin species coexist within the same cell. This analysis also showed for the first time the coexistence of α and β tubulin, vimentin, α actinin and three other polypeptides present in intermediate-filament-enriched cytoplast cytoskeletons (spots 12, 24 and 31). Determination of the ratio of γ plus β to ζ actin in different cytoskeletal preparations of intact and enucleated sarcoma 180 cells indicated that this actin species is not localized specifically to any of the major actin-containing structures preserved in the cytoskeletons.  相似文献   

14.
15.
16.
17.
BACKGROUND:Various imaging properties of scanning laser ophthalmoscopes (SLO) such as contrast or depth discrimination, are superior to those of the traditional photographic fundus camera. However, most SLO are monochromatic whereas photographic systems produce colour images, which inherently contain information over a broad wavelength range. METHODS:An SLO system has been modified to allow simultaneous three channel imaging. Laser light sources in the visible and infrared spectrum were concurrently launched into the system. Using different wavelength triads, digital fundus images were acquired at high frame rates. RESULTS:Favourable wavelengths combinations were established and high contrast, true (red, green, blue) or false (red, green, infrared) colour images of the retina were recorded. The monochromatic frames which form the colour image exhibit improved distinctness of different retinal structures such as the nerve fibre layer, the blood vessels, and the choroid. CONCLUSIONS:A multi-channel SLO combines the advantageous imaging properties of a tunable, monochrome SLO with the benefits and convenience of colour ophthalmoscopy. The options to modify parameters such as wavelength, intensity, gain, beam profile, aperture sizes, independently for every channel assign a high degree of versatility to the system.  相似文献   

18.
Measurement of the correlation between sensor-protein expression, motility and environmental change is important for understanding the adaptation process of cells during their change of generation. We have developed a novel assay exploiting the on-chip cultivation system, which enabled us to observe the change of the localization of expressed sensor-protein and the motility for generations. Localization of the aspartate sensitive sensor protein at two poles in Escherichia coli decreased quickly after the aspartate was added into the cultivation medium. However, it took more than three generations for recovering the localization after the removal of aspartate from the medium. Moreover, the tumbling frequency was strongly related to the localization of the sensor protein in a cell. The results indicate that the change of the spatial localization of sensor protein, which was inherited for more than three generations, may contribute to cells, motility as the inheritable information.  相似文献   

19.
Summary The marine microalgaeTetraselmis suecica, Isochrysis galbana, Dunaliella tertiolecta andChlorella stigmatophora are good biological sources of single cell protein (SCP). Protein content accounts for 39.12%–54.20% of the dry matter,D. tertiolecta having the highest. Lysine values are between 3.67 and 4.52 g/100 g of protein, and thus are higher than those for freshwater species. The total nucleic acid content is less than 7% of the dry matter; this value is definitely lower than that for yeasts or bacteria, commonly used as SCP sources. Amino acid profiles of the four species are very similar and comparable to the FAO reference protein, buth with a low content of methionine and cystine and a high content of lysine. The MEAA indices are between 81 and 84.98, without significant differences among the four species. Marine microalgae can be used as a potential SCP source.  相似文献   

20.
In vivo, the pH value and oxygen partial pressure are the most important physico-chemical parameters in the microenvironment of human tissues. In vitro, the extracellular acidification rate of cell cultures is an indicator of global cellular metabolism, while the rate of oxygen consumption is a measure of mitochondrial activity. Earlier approaches had the disadvantage that these two values had to be measured with two separate sensors at different loci within the tissue or cell culture. Furthermore, conventional Clark-type oxygen sensors are not very compatible for miniaturisation, making it impossible to measure at small cell volumes or even at the single cell level. We have, therefore, developed an ISFET based sensor structure which is able to measure both pH and oxygen partial pressure. This sensor structure was tested in vitro for simultaneous records of cellular acidification and respiration rates at the same site within the cell culture. This sensor is manufactured by a CMOS-process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号