首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a first step towards unravelling some of the complexity of the signalling and modulatory mechanisms in the antennal lobe (AL) of the desert locust Schistocerca gregaria, I analysed the immunocytochemical identity of AL interneurons. Antibodies against serotonin, histamine, locustatachykinin, leucokinin and FMRFamide were used to reveal the morphology of interneurons ramifying in the AL. In addition, double-labelling experiments were performed in order to demonstrate colocalisation of GABA and locustatachykinin and to investigate the ramification patterns of immunolabelled interneurons and physiologically characterised olfactory projection neurons (PNs) injected with Lucifer yellow. Immunoreactivity to these antibodies revealed six different types of interneurons with different patterns of ramification within the glomerular neuropil: (1, 2) Centrifugal interneurons displaying serotonin immunoreactivity, which arborised extensively within the AL and extended varicose fibres into the microglomerular core where close associations with dendrites of AL PNs could be distinguished. (3) Histamine-immunoreactive centrifugal interneurons with arborisations in the protocerebrum and the dorsal non-glomerular regions of the AL and the lobus glomerulatus (LG). (4) Locustatachykinin-immunoreactive local interneurons, colocalising GABA, arborising throughout the AL and extending varicose fibres throughout the glomerular neuropil where close associations with dendrites of AL PNs could be distinguished. (5) Leucokinin-immunoreactive descending neurons connecting the protocerebrum, the AL, the LG and all ganglia of the ventral nerve cord. These neurons displayed sparse innervation of the AL and extended varicose fibres into the interglomerular space. (6) FMRF-amide-immunoreactive centrifugal interneurons, connecting the lateral protocerebrum with the AL and the LG, which arborised sparsely within these neuropils and displayed similar innervation of the microglomeruli as (1) and (2).  相似文献   

2.
Fluorogenic monoamines were studied in the brain of three cockroach species by use of aldehyde-fluorescence techniques. All three optic ganglia contain fluorogenic monoamines. The lamina contains fibres with an indolylalkylamine-fluorophore. The medulla is innervated by local CA neurons which contribute to four fluorescent strata. The lobula receives both CA- and 5-HT-fibres, predominantly of central origin. CA occur in almost all areas of the brain. The areas are interconnected by a CA-fibre system. All parts of the mushroom body are innervated by CA-fibres from the surrounding neuropil. The CA innervation in the mushroom body divides it into a fronto-ventral part (alpha-lobe, beta-lobe, anterio-ventral peduncle) and a dorso-caudal part (caudo-dorsal peduncle, calices) leaving a fluorescence-free central part of the peduncle in between. CA-fibres run between the mushroom bodies of both hemispheres and also between the mushroom body and the lobula. The central body complex contains CA. The pons aggregates indolylalkylamine-containing fibres. The olfactory glomeruli are surrounded by CA-fibres originating from deutocerebral cell bodies. CA-fibres are further linked to the protocerebral neuropil. CA-fibre tracts pass from the brain to the suboesophageal ganglion and the stomatogastric nervous system. The cell bodies of the frontal ganglion are of indolylalkylamine type. Non-fluorescent neuropils (n. ocellaris, tractus olfactorio-globularis, lobus glomerulatus) are innervated by the CA-fibre system.  相似文献   

3.
Summary Receptor cell axons from the antennal flagellum terminate in the glomeruli of the ipsilateral deutocerebrum in Periplaneta americana and Locusta migratoria. Processes from several groups of deutocerebral neurons also enter the glomeruli and terminate in characteristic branching patterns. There, they contact the antennal axons. Connections are both convergent and divergent. Not only do single central neurons collect the inputs from many receptor cells, but receptor axons were often observed to branch and terminate at more than one deutocerebral neuron. The axons from a portion of the neurons go to form the deutocerebral bundle of the tractus olfactorioglobularis. These axons of the bundle terminate in the ipsilateral calyx of the corpus pedunculatum and in the lateral lobus protocerebri. The processes of the majority of the deutocerebral neurons stay within the deutocerebrum itself and may serve as local interneurons. Part of some antennal fibers terminate in the lobus dorsalis. The lobus glomeratus receives inputs from the maxillary palps and also from processes of deutocerebral neurons.Electron microscopy of synaptic connections and anatomical experiments reveal a complicated pattern of connections between receptor axons and higher order neurons as well as between higher order neurons themselves within the glomeruli.The ratio of the number of antennal fibers to that of relay fibers could easily lead to the interpretation, that the deutocerebrum merely serves as a device for reducing the number of transmission channels. However, coupled with physiological data, anatomical details such as conand divergence of input and interconnections between input channels suggest rather a filtering system and a highly complicated integrative network.  相似文献   

4.
In the metazoan central nervous system (CNS), serotonergic neurons send projections throughout the synaptic neuropil. Little is known about the rules that govern these widespread neuromodulatory branching patterns. In this study, we utilize the Drosophila as a model to examine serotonergic branching. Using single cell GFP labeling we show that within each segment of the Drosophila ventral nerve cord (VNC), each of two serotonergic neurons tiles distinct innervation patterns in the contralateral neuropil. In addition, branches extend only a short distance from the target segment. Through ablation-mediated isolation of serotonergic cells, we demonstrate that the distinct areas of innervation are not maintained through competition between neighboring like-serotonergic neurites. Furthermore, the basic branching pattern of serotonergic neurons within the neuropil remains unchanged despite alterations of initial axonal trajectories.  相似文献   

5.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

6.
Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents’ target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.  相似文献   

7.
To determine if the initial level of NGF mRNA in developing cutaneous epithelium is correlated with its final innervation density, we measured the concentration of NGF mRNA in the epithelia of the maxillary, mandibular and ophthalmic territories of trigeminal ganglion in the embryonic mouse. At the onset of neuronal death in the ganglion there were marked differences in the concentration of NGF mRNA in these epithelia: the level was highest in the epithelium of the densely innervated maxillary territory, it was lower in the epithelium of the moderately innervated mandibular territory and was lowest in the epithelium of the sparsely innervated ophthalmic territory. These regional differences in the level of NGF mRNA during the early stages of target field innervation suggest that the level of NGF production in target field cells, rather than regional differences in the access of innervating neurons to NGF, governs the number of neurons that survive. Because the same percentage cell death occurs in each of the subsets of trigeminal neurons that innervate the maxillary, mandibular and ophthalmic territories, regional differences in NGF synthesis are not responsible for establishing differences in innervation density, rather they maintain differences that arise earlier in development.  相似文献   

8.
The tetrapeptide FMRFamide is known to affect both neural function and gut contraction in a wide variety of invertebrates and vertebrates, including insect species. This study aimed to find a pattern of innervation of specific FMRFamide-labeled neurons from the abdominal ganglia to the hindgut of the silkworm Bombyx mori using the immunocytochemical method. In the 1st to the 7th abdominal ganglia, labeled efferent neurons that would innervate the hindgut could not be found. However, in the 8th abdominal ganglion, three pairs of labeled specific efferent neurons projected axons into the central neuropil to eventually innervate the hindgut. Both axons of two pairs of labeled cell bodies in the lateral rind and axons of one pair of labeled cell bodies in the posterior rind extended to the central neuropil and formed contralateral tracts of a labeled neural tract with a semi-circular shape. These labeled axons ran out to one pair of bilateral cercal nerves that extended out from the posterior end of the 8th abdominal ganglion and finally to the innervated hindgut. These results provide valuable information for detecting the novel function of FMRFamide-related peptides in metamorphic insect species.  相似文献   

9.
The exoskeletal morphology, muscular organization, and innervation patterns of the tymbals of seven sound-producing species of tiger moths (Arctiidae) were compared with the undifferentiated episterna of two silent species. At least three muscles are involved in sound production: the tymbal muscle, pv2, and the accessory muscles, pvl and/or pv6. All of the tymbal muscles are innervated by the IIIN2a branch of the metathoracic leg nerve, which contains two axons larger than the others. Backfills of the tymbal branch of the IIIN2a reveal a medial sensory neuropil and a population of five ipsilateral motor neurons whose somata are clustered into three groups along the anterior edge of the metathoracic ganglion. The dendritic arborizations of the motor neurons extend to the ganglionic midline but are separate from one part of the auditory neuropil observed in other noctuoids. The study concludes that the arctiid tymbal reveals only minor modifications (e.g., cuticle thinning) of the episterna of silent moths and represents a primitive form of the tymbal compared to those of the Cicadidae.  相似文献   

10.
Study of neuropil of the abdominal brain of the polychaete Nereis diversicolor Mull. by supravital staining with methylene blue has permitted revealing tissue receptors of the origin unusual for Articulata. They are connected mainly with the dorsal and ventral associative areas of neuropil and to the lesser extent with sensory neuropils, the areas of neuropil studied in detail earlier. The revealed receptor structures are attributed to six types: (1) the widely spread bushes of the first and second types; (2) the low-ordered bushes; (3) the single ordered bushes in the region of connectives; (4) the widely spread highly-ordered bushes; (5) the glomerule-like paired receptors; (6) the glomerule-like unpaired receptors bending towards the animal diagonal muscle. It is suggested that the majority of the revealed receptor structures are mechanoreceptors perceiving the extent of stretching and contraction of certain muscles: the dorsomedial muscle tightly fused into the abdominal brain glial capsule and the diagonal muscles of the animal body, as well as the receptors perceiving the extent of stretching of intersegmental septa-dissepiments. The glomerule-like paired receptors seem to be chemoreceptors responding to molecular composition of the coelomic fluid in compartments of coelome. A possibility is considered that some of the described receptor apparatuses are derivatives not only of associative neurons of the abdominal brain, but also of the associative-motor neurons that exist in nereids (in a relatively low number); their axons leave the abdominal brain for innervation of somatic musculature, which would be an evidence of a rare phenomenon of incorporation of the mono-chain arch into the system of the abdominal brain.  相似文献   

11.
Two neurotrophins and their two receptors appear to regulate the survival of vestibular and cochlear neurons in the developing ear. Mice lacking either brain derived neurotrophic factor (BDNF) or its associated receptor, Trk B, show a severe reduction in the number of vestibular neurons and a loss of all innervation to the semicircular canals. Mice lacking NT-3 or its receptor, Trk C, show a severe reduction of spiral neurons in the basal turn of the cochlea. Mice lacking both BDNF and NT-3 or Trk B and Trk C, reportedly lose all innervation to the inner ear. These two neurotrophins and their associated receptors are necessary for the normal afferent innervation of the inner ear.  相似文献   

12.
Vibrissae are a unique sensory system of mammals that is characterized by a rich and diverse innervation involved in numerous sensory tasks with the potential for species-specific differences. In the present study, indocarbocyanine dyes (DiI and PTIR271) and confocal microscopy were combined to study the innervation of the mystacial vibrissae and vibrissa-specific sensory neuron distribution in the maxillary portion of the trigeminal ganglion of the mouse. The deeper regions of the vibrissa cavernous sinus (CS) contained a dense plexus of free nerve endings, possibly of autonomic fibers. The superficial part of this sinus displayed a massive array of corpuscular endings. Innervation in the region of the ring sinus consisted of Merkel endings and different morphological variances of lanceolate endings. The region of the inner conical body had a circular plexus of free nerve endings. In addition to confirming previous observations obtained by a variety of other techniques and ultrastructural studies, our studies revealed denser terminal receptor endings in a different distribution pattern than previously demonstrated in studies using the rat. We also revealed the distribution of sensory neurons in the trigeminal ganglion using retrograde tracing with fluorescent tracers from two nearby vibrissae. We determined that the populations of sensory neurons innervating the two vibrissae were largely overlapping. This suggests that the somatotopic maps of vibrissal projections reported at the different levels in the neuraxis are not faithfully reproduced at the level of the ganglion.This work was supported by a grant from the NIDCD (RO1 DC 005590; BF), the Egyptian government (AM), and the NIH (ES00365-01 and RR-02-003; LH).  相似文献   

13.
At thoracic and lumbar levels the spinal dorsal gray of young specimens of the turtle Chrysemys d'orbigny consists of a cell-free neuropil and an aggregation of perikarya termed here the lateral column of the dorsal horn (LCDH). Nerve cell clusters also occur in the dorsal commissure. The main neuropil area can be divided into a thin superficial layer containing some myelinated fibers (neuropil area Ib) and a compact core composed of unmyelinated axon terminals, dendritic branches, and thin glial processes (neuropil area II). A looser neuropil area is located at the horn base (neuropil area III). The so-called marginal zone of de Lange represents a fourth synaptic field termed here neuropil area Ia. The LCDH consists of neurons of different size and shape. Two peculiar nerve cell types have been recognized in the dorsal horn: giant and bitufted neurons. The former exhibits a large dendritic arbor, which after passing through neuropil areas II and Ib projects into neuropil area Ia and the adjacent white matter. Most frequently Golgi-stained giant neurons have perikarya and dendritic domains on the same side (ipsilateral giant neurons). There are also heterolateral giant neurons whose dendritic branches invade the opposite horn. Bitufted neurons are characterized by the presence of two main dendritic shafts connecting neuropil area II of both dorsal horns. At neuropil levels the major dendritic branches ramify profusely giving rise to short tortuous terminal processes. Perikarya of bitufted neurons occur in the dorsal commissure. The LCDH also contains many small and medium-sized neurons. These are oriented in two main directions: parallel or radial with respect to the dorsal horn surface. The population of horizontally oriented neurons comprises two subtypes termed here alpha and beta. Radially oriented neurons are pleomorphic, defying precise, unequivocal classification.  相似文献   

14.
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.  相似文献   

15.
The visual system of the larval tiger beetle (Cicindela chinensis) consists of six (two large, two mediumsized, and two small) stemmata on either side of the head, and an underlying neuropil mass. Each stemma exhibits a corneal lens and an underlying rhabdom layer. Retinular cells extend single proximal axons into the neuropil mass. The neuropil mass has a flattened heart-shape, and consists of two juxtaposed identical structures, each being a neuropil complex of each of the two large stemmata. The complex consists of lamina and medulla neuropils. Most retinular axons terminate in the lamina neuropil. Axons of two types of lamina monopolar neurons descend parallel to each other into the lamina neuropil. Moreover, each lamina neuropil contains a single giant monopolar neuron. Possible centrifugal processes and tangential neurons also occur. Lamina monopolar axons descend straight into the medulla neuropil. Medulla neurons spread fan-shaped dendrites distally in the medulla neuropil and send single axons toward the protocerebrum. These data are discussed with respecct to the unique visual behavior of this larva and in comparison with other insect visual systems.  相似文献   

16.
Summary The distribution of -aminobutyric acid (GABA) immunoreactivity was studied in the brain of two amphibian species (Triturus cristatus carnifex, Urodela; Rana esculenta, Anura) by employing a specific GABA antiserum. A noteworthy immunoreactive neuronal system was found in the telencephalic dorsal and medial pallium (primordium pallii dorsalis and primordium hippocampi) and in the olfactory bulbs. In the diencephalic habenular nuclei there was a rich GABAergic innervation, and immunoreactive neurons were observed in the dorsal thalamus. In the hypothalamus the GABA immunoreactivity was found in the preoptic area, the paraventricular organ and in the hypothalamo-hypophysial complex. In the preoptic area of the frog some GABA-immunoreactive CSF-contacting cells were shown. In the optic tectum immunolabeled neurons were present in all the cellular layers. A rich GABAergic innervation characterized both the fibrous layers of the tectum and the neuropil of the tegmentum and interpeduncular nucleus. In the cerebellum, in addition to the Purkinje cells showing a variable immunopositivity, some immunoreactive cell bodies appeared in the central grey. Abundant immunolabeled nerve fibers in the acoustico-lateral area and some immunopositive neurons in the region of the raphe nucleus were observed. In conclusion, the GABAergic central systems, well-developed in the amphibian species studied, were generally characterized by close similarities to the pattern described in mammals.Dedicated to Professor Valdo Mazzi (Dipartimento di Biologia Animale, Università di Torino), in honor of his 70th birthday  相似文献   

17.
Although stomatopod crustaceans use their chemical senses in many facets of behavior, little is known about their chemosensory neural pathways, especially in comparison to the better-studied decapod crustaceans. We examined the stomatopod Neogonodactylus oerstedii to determine organizational aspects of peripheral and central neural pathway of antennules, which is a major chemosensory organ. We describe the three flagella of the triramous antennule as the medial, dorsolateral, and ventrolateral flagella. The primary branch point is between the medial flagellum and lateral flagella, and the secondary branch point is at the junction of the dorsolateral and ventrolateral flagella. The antennule bears at least three types of setae, based on their external morphology. Simple setae are present only on the medial flagellum and ventrolateral flagellum, organized as a tuft of 10-15 setae on each flagellar annulus. Aesthetasc setae and asymmetric setae occur only on the distal annuli of the dorsolateral flagellum, with each annulus bearing a row of three aesthetascs and one asymmetric seta. DiI fills of the antennular nerve near the junction of the flagella show that sensory neurons in the antennular flagella project to two neuropils in the ipsilateral midbrain-the olfactory lobe (OL) and lateral antennular neuropil (LAN). The OL is glomerular and has rich serotonergic innervation, a characteristic of the OL in decapods. The LAN is bi-lobed and stratified as it is in decapods. However, the LAN of stomatopods differs from that of decapods in being relatively large and containing extensive serotonergic innervation. The median antennular neuropil of stomatopods has sparse serotonergic innervation, and it is more diffusely organized compared to decapods. No accessory lobes were found in N. oerstedii. Thus, the stomatopod antennular flagella have the same two, highly organized parallel pathways common to decapods-the OL pathway and the LAN pathway.  相似文献   

18.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

19.
    
Summary The peripheral nerves of the suboesophageal ganglion of the locust,Locusta migratoria have been investigated with respect to their innervation by dorsal unpaired median (DUM) neurons. The DUM neuron supply of the suboesophageal periphery was found to be strikingly sparse: No segmental DUM neurons could be found in all three mouthpart segments. While in the mandibular segment DUM neuron innervation appears to be missing entirely, both the maxillary and the labial peripheral nerves are supplied by a single, intersegmentally projecting prothoracic DUM neuron.Abbreviation DUM dorsal unpaired median  相似文献   

20.
Data on distribution of biologically active substances in the turtle optic tectum are compared with results of similar experiments on other reptilian as well as on avian species. In two turtle species (Testudo horsfield and Emys orbicularis), immunoreactivity to monoamines (5-HT and TH), NPY, as well as NADPH-d activity were similarly distributed in neuropil of the SGFS retinorecipient part and in that of the SGP/SAP periventricular layers. Immunoreactivity to neuropeptides SP and m-Enk was maximal in neuropil of the SGFS non-retinorecipient part. The periventricular layers were characterized by the abundant radial SP- and mENK-ir as well as the NADPH-d-positive neurons. Diffusely dispersed ChAT-ir elements and many ir fibers perpenducilar to the tectal surface were observed in the SGFS retinorecipient part; the SGFS non-retinorecipient part contained a dense plexus of thick ir fibers and diffusely distributed ir terminals. The GABA ir cells were the most numerous in the tectum; they were spread in all tectal layers. Thus, various biologically active substances located in superficial retinorecipient tectal sublayers could affect processing and transmission of information via ascending dendrites of neurons in deeper layers. The cells containing SP, m-Enk, and NADPH-d had laminar organization in SGP; via the system of ascending and descending axons, they are able to affect other structures within and outside of the optic tectum. Putative sources of tectal modulatory innervation are discussed. In all studied reptilian and avian species, the principal similarity is revealed in the neurochemical organization. Some differences might be explained by the level of tectal differentiation due to factors of phylogenetic evolution and/or adaptive specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号