首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Lin  W. J. Uwate  V. Stallman 《Planta》1977,135(2):183-190
The pollen tube of Prunus avium (cherry) consists of a growth zone of vesicles at the tip and an assemblage of organelles typical of an actively metabolizing cell. Electron opaque globules are closely associated with the plasma membrane and fibrillar cell wall layer at the tip. Acid phosphatase (EC 3.1.3.2) activity is localized in the membranes of 120 nm vesicles and ER system, the lumen of 50 nm vesicles, the plasma membrane and the tube nucleus.  相似文献   

2.
Summary

In late previtellogenic oocytes nuage material accumulates in the vicinity of the nucleus and is often seen to be intimately associated with cisternae of endoplasmic reticulum (ER). A similar association observed in Ilyanassa has given rise to the proposition that nuage granules become completely enclosed in an envelope of ER and that this structure is transformed into so-called double-membrane vesicles, organelles which have only been found in eggs of Ilyanassa and Nassarius. This study provides evidence that, in Nassarius, the association of nuage material with ER has a temporary character. At later stages the nuage granules dissociate from the ER, move away from the nucleus, and become surrounded by mitochondria. Eventually they disintegrate. Evidence is presented that double-membrane vesicles originate from cisternae of ER by the accumulation and transformation of material within the lumen of the cisternae. Since only a single membrane is present in these vesicles, and a dense core is consistently found if the appropriate fixation is employed, I suggest that these vesicles be called dense-core vesicles instead of double-membrane vesicles.  相似文献   

3.
Autophagy defines the lifespan of eukaryotic organisms by ensuring cellular survival through regulated bulk clearance of proteins, organelles and membranes. Pathophysiological consequences of improper autophagy give rise to a variety of age-related human diseases such as cancer and neurodegeneration. Rational therapeutic implementation of autophagy modulation remains problematic, as fundamental molecular details such as the generation of autophagosomes, unique double-membrane vesicles formed to permit the process of autophagy, are insufficiently understood. Here, freeze-fracture replica immunolabelling reveals WD-repeat protein interacting with phosphoinositides 1 and 2 (WIPI-1 and WIPI-2) as membrane components of autophagosomes and the plasma membrane (PM). In addition, WIPI-1 is also present in membranes of the endoplasmic reticulum (ER) and WIPI-2 was further detected in membranes close to the Golgi cisternae. Our results identify WIPI-1 and WIPI-2 as novel protein components of autophagosomes, and of membrane sites from which autophagosomes might originate (ER, PM, Golgi area). Hence therapeutic modulation of autophagy could involve approaches that functionally target human WIPI proteins.  相似文献   

4.
R. S. Pearce  I. McDonald 《Planta》1977,134(2):159-168
Tillers of Festuca arundinacea Schreb. were subjected to-8°C in a bath of methylated spirits for three-quarters of an hour. They were thawed at room temperature and some material taken from the shoot apical meristem and leaf blade for electron microscopy. Similar material was taken from control plants for electron microscopy. Nine tillers subjected to-8°C and thawed subsequently failed to regrow. Nine control tillers regrew. All the treated meristem cells and about half the treated leaf mesophyll cells were extensively altered. Their nuclei were contracted, organelles were swollen or partly disrupted, plasmalemma and nuclear membranes were broken or absent and vacuoles were sometimes disrupted. Strongly osmiophilic material accumulated in the vicinity of membranes. About half the leaf mesophyll cells differed from the control mesophyll cells only in having more spherosomes and narrower thylakoids. Parallels with other ultrastructural studies of stress damage and the indications the results give of possible primary damaging events are discussed.Abbreviations ER endoplasmic reticulum - G golgi body - M mitochondrion - Mb microbody - N nucleus - NM nuclear membrane - No nucleolus - P plasmatemma - Pg plastoglobuli - Pp proplastid - Pr polysomes - S spherosome - SOM strongly osmiophilic material - T tonoplast - Th thylakoids - V vacuole  相似文献   

5.
Summary Cytochemical detection of ATPase activity in the pollen grain (PG) and pollen tube (PT) of Agapanthus umbelatus showed that the enzymes concerned presented specific patterns of membrane distribution according to their ionic dependencies and to the timecourse of germination and tube growth. In the pollen tubes Ca2+-ATPases were mainly localized in mitochondria and ER membranes, while Mg2+-ATPases were found especially in the tonoplast and in the membrane of the P-particles. K+-ATPases showed a high activity at the plasma membrane. In the pollen grain similar patterns of ATPase activity were observed. The highest activity of all three types was observed at the plasma membrane of the grain and at the intine and inner exine layers of the cell wall. The activity observed in the pollen grain cell wall decreased with germination time. In vivo germination studies in the presence of specific inhibitors of the ATPases showed patterns of inhibition that could be correlated with the corresponding ATPase putative role.The results are discussed in terms of the ultrastructural organization of the PG and PT, especially those correlated with (1) formation and maintenance of ionic gradients throughout the PT, (2) polarized growth and (3) hydrodynamics of PT elongation.Abbreviations PT Pollen tube - PG pollen grain - PTW pollentube wall - PGW pollen-grain wall - ER endoplasmic reticulum - NEM N-ethylmaleimide  相似文献   

6.
Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain-containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.  相似文献   

7.
M. D. Lazzaro 《Protoplasma》1996,194(3-4):186-194
Summary Actin microfilaments form a dense network within pollen tubes of the gymnosperm Norway spruce (Picea abies). Microfilaments emanate from within the pollen grain and form long, branching arrays passing through the aperture and down the length of the pollen tube to the tip. Pollen tubes are densely packed with large amyloplasts, which are surrounded by branching microfilament bundles. The vegetative nucleus is suspended within the elongating pollen tube within a complex array of microfilaments oriented both parallel to and perpendicular with the growing axis. Microfilament bundles branch out along the nuclear surface, and some filaments terminate on or emanate from the surface. Microfilaments in the pollen tube tip form a 6 m thick, dense, uniform layer beneath the plasma membrane. This layer ensheathes an actin depleted core which contains cytoplasm and organelles, including small amyloplasts, and extends back 36 m from the tip. Behind the core region, the distinct actin layer is absent as microfilaments are present throughout the pollen tube. Organelle zonation is not always maintained in these conifer pollen tubes. Large amyloplasts will fill the pollen tube up to the growing tip, while the distinct layer of microfilaments and cytoplasm beneath the plasma membrane is maintained. The distinctive microfilament arrangement in the pollen tube tips of this conifer is similar to that seen in tip growth in fungi, ferns and mosses, but has not been reported previously in seed plants.  相似文献   

8.
O. Schou 《Protoplasma》1984,121(1-2):99-113
Summary The stigmatic papillae of the distylous speciesPrimula obconica are studied by means of cytochemical, light and electron microscopic techniques. The papillae on thrum stigmas are smaller than those on pin stigmas. At the bud stage, secretory vesicles are not a conspicious part of the cytoplasm, although certain signs of secretory activity are present. The young papillae bear the thin, superficial pellicle typical to dry stigmas. Small vesicles are numerous in mature papillae of both morphs, and seem to originate from the ER. A layer of closely packed, osmiophilic globuli is present in the outermost part of mature walls of pin papillae. At sites with cuticle disruption, the globuli seem to migrate outwards to be incorporated with the copious, blistery exudate. Due to this exudate the pin stigma is characterized as wet. Cytochemical tests suggest that the exudate contains mainly lipids, and different carbohydrates and protein are detected. It reacts positively in tests for peroxidase, acid phosphatase, and non-specific esterases. The thrum stigma remains dry at maturity, with a distinct pellicle also reacting positively to the enzyme tests. Only a few, scattered osmiophilic globuli, sized and situated as those in the pin papillae walls, are found in the thrum walls, and they do not form a proper layer.Thus the generally accepted correlation between dry stigmas and the sporophytic kind of self-incompatibility system is not substantiated withinP. obconica, and the possible influence of the dimorphisms to the pollen/stigma interaction is discussed.  相似文献   

9.
Gap junctions (GJs) are composed of tens to many thousands of double-membrane spanning GJ channels that cluster together to form densely packed channel arrays (termed GJ plaques) in apposing plasma membranes of neighboring cells. In addition to providing direct intercellular communication (GJIC, their hallmark function), GJs, based on their characteristic double-membrane-spanning configuration, likely also significantly contribute to physical cell-to-cell adhesion. Clearly, modulation (up-/down-regulation) of GJIC and of physical cell-to-cell adhesion is as vitally important as the basic ability of GJ formation itself. Others and we have previously described that GJs can be removed from the plasma membrane via the internalization of entire GJ plaques (or portions thereof) in a cellular process that resembles clathrin-mediated endocytosis. GJ endocytosis results in the formation of double-membrane vesicles [termed annular gap junctions (AGJs) or connexosomes] in the cytoplasm of one of the coupled cells. Four recent independent studies, consistent with earlier ultrastructural analyses, demonstrate the degradation of endocytosed AGJ vesicles via autophagy. However, in TPA-treated cells others report degradation of AGJs via the endo-/lysosomal degradation pathway. Here we summarize evidence that supports the concept that autophagy serves as the cellular default pathway for the degradation of internalized GJs. Furthermore, we highlight and discuss structural criteria that seem required for an alternate degradation via the endo-/lysosomal pathway.  相似文献   

10.
G. Kakefuda  S. H. Duke  M. S. Hostak 《Planta》1986,167(2):175-182
The organelles of soybean (Glycine max (L.) Merr.) protoplasts were separated using a recently developed procedure which allows rapid (3-h) recovery of a fraction enriched for coated vesicles (CVs). As determined by marker-enzyme enrichment and ultrastructural analysis of isolated membrane fractions, endoplasmic reticulum, Golgi membranes, glucan-synthase-II (EC 2.4.1.34)-containing membranes (putative plasma membrane), mitochondria, and CVs were enriched in separate fractions in a sucrose density gradient. Glucan synthase I (EC 2.4.1.12) had the highest specific activity in the Golgi-enriched and CV-enriched fractions and was found to comigrate with CVs upon rate-zonal centrifugation of a CV-enriched fraction. For further elucidation of the role of these latter organelles in cell-wall regeneration, freshly isolated protoplasts were pulsed with [3H]glucose for 20 min, and the disappearance of label from the organelles was followed for the ensuing 1 h. Although a CV-enriched fraction contained glucan synthase I, it contained very small amounts of labelled polysaccharide during the period of study. Pulse-chase experiments with [3H]glucose helped to confirm the role of the Golgi apparatus in secretion of matrix polysaccharides by protoplasts.Abbreviations CV(s) coated vesicle(s) - Da dalton - ER endoplasmic reticulum - GSI,II glucan synthase I and II, respecitively Two whom correspondence should be directed. Address after February 1986:Department of Biology, Texas A&M University. College Station, TX 77843-3258, USA  相似文献   

11.
Summary In order to study the synthesis and degradation processes of the photoreceptor membranes in the abalone, Nordotis discus, the localization of acyltransferase and acid hydrolase activities, respectively, were determined at the electron-microscopic level. Acyltransferase activity was localized on the cytoplasmic sides of thick (>10 nm) membranes of the following organelles: a few cisternae at the trans (or concave) side of Golgi apparatus, Golgi and probably related vesicles, short tubules, curved pentalaminar disks and limiting membranes of the phagosomal multivesicular bodies; all organelles were scattered in the peri- to supranuclear cytoplasm. The phospholipids, which are major components of the photoreceptor membrane, are considered to be synthesized by these membranes. Acid phosphatase activity was localized in the lumina of Golgi cisternae and vesicles, lysosomes, and smaller multivesicular and related bodies, but not in multilamellar bodies. The matrices of the larger multivesicular bodies and of the pigment granule complexes showed arylsulfatase activity. Vesiculated and autophagocytosed photoreceptor microvilli seemed to be degraded by acid hydrolases, forming multivesicular and related bodies. Supporting cells also showed acyltransferase and acid hydrolase activities.Abbreviations used in this Paper AcP acid phosphatase - ArS arylsulfatase - AT acyltransferase - ER endoplasmic reticulum - GERL Golgi-endoplasmic reticulum-lysosomal complex - MEB meshwork body - MLB multilamellar body - MVB multivesicular body - VLB vesiculolamellar body  相似文献   

12.
Summary The ultrastructural organization of the cortical cytoplasm has been examined in caulonemata, branches and buds of the mossFunaria hygrometrica, which were prepared by rapid freeze-fixation and freeze-substitution (FS). The same structural components occur in the cortex of all three cell types: microtubules (MTs), endoplasmic reticulum (ER), coated and uncoated vesicles, coated pits, and dictyosomes. However, the configuration and density of the cortical ER varies between the three. Caulonemata have an open, polygonal network of ER associated with long MTs oriented mostly parallel to the length of the cell. Lamellar ER, covered with polysomes, is interspersed in the network. Branches have a more tightly arranged ER network, at places occurring in a thick layer, and occasional polysome-decorated lamellae. MTs, which extend to the tip of the branch, are oriented mainly parallel to the cell's long axis and are associated with the cortical ER. Buds have the tightest ER network, which is frequently arranged in a thick layer. Tubules in the polygonal ER of buds are densely covered with ribosomes, whereas tubules in the ER network of caulonemata and branches range from nearly smooth to moderately rough. Closely-spaced ER lamellae, with many polysomes, occur in some buds. The MTs of buds extend into the apical dome and are associated with the cortical ER, but are more randomly oriented than in caulonemata or branches. Close appositions between the ER and PM are observed in all three cells, but are more frequent in buds.Abbreviations DiOC6(3) 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - FS freeze-substitution - MT microtubule - MF microfilament - PM plasma membrane  相似文献   

13.
14.
Summary In view of the importance of the lily pollen tube as an experimental model and the improvements in ultrastructural detail that can now be attained by the use of rapid freeze fixation and freeze substitution (RF-FS), we have reexamined the ultrastructure of these cells in material prepared by RF-FS. Several previously unreported details have been revealed: (1) the cytoplasm is organized into axial slow and fast lanes, each with a distinct structure; (2) long, straight microtubule (MT) and microfilament (MF) bundles occur in the cytoplasm of the fast lanes and are coaligned with every organelle present; (3) the cortical cytoplasm contains complexes of coaligned MTs, MFs, and endoplasmic reticulum (ER); (4) the cortical ER is arranged in a tight hexagonal pattern and individual elements are closely appressed to the plasma membrane with no space between; (5) mitochondria and ER extend into the extreme apex along the flanks of the pollen tube, and vesicles and ER are packed into an inverted cone-shaped area at the center of the apex; (6) MF bundles in the tip region are fewer, finer, and in random orientation in comparison to those of the fast lanes; (7) the generative cell (GC) cell wall complex contains patches of plasmodesmata; (8) The GC cytoplasm contains groups of spiny vesicles that are closely associated with and seem to be fusing with or pinching off from mitochondria, and (9) the vegetative nucleus (VN) contains internal MT-like structures as well as numerous cytoplasmic MTs associated with its membrane and also located between the VN and GC.Abbrevations CF chemical fixation - ER endoplasmic reticulum - GC generative cell - MF microfilament - MT microtubule - PD plasmodesmata - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution - VN vegetative nucleus  相似文献   

15.
16.
Summary Single photoreceptor cells in the compound eye of the housefly Musca domestica were selectively illuminated and subsequently compared electron-microscopically with the unilluminated photoreceptors in the immediate surroundings. The rhabdomeres of the illuminated cells remain largely unaffected, but the cells show an increase in the number of coated pits, various types of vesicles, and degradative organelles; some of the latter organelles are described for the first time in fly photoreceptors. Coated pits are found not only at the bases of the microvilli, but also in other parts of the plasma membrane. Degradative organelles, endoplasmic reticulum (ER) and mitochondria aggregate in the perinuclear region. The rough ER and smooth ER are more elaborate, the number of Golgi stacks, free ribosomes and polysomes is increased, and the shape and distribution of heterochromatin within the nuclei are altered. Illuminated photoreceptors also interdigitate extensively with their neighbouring secondary pigment cells. These structural changes in illuminated fly photoreceptor cells indicate an increase in membrane turnover and cellular metabolism. When applied to the eye, Lucifer Yellow spreads into the extracellular space and is taken up only by the illuminated photoreceptor cells. These cells show the same structural modifications as above. Horseradish peroxidase applied in the same way is observed in pinocytotic vesicles and degradative organelles of the illuminated cells. Hence, the light-induced uptake of extracellular compounds takes place in vivo at least partially as a result of an increase in pinocytosis.  相似文献   

17.
We investigated the behaviour of organelles stained with FM1-43 (putative endosomes) and/or LysoTracker Red (LTred; acidic compartments) and of the endoplasmic reticulum (ER) during healing of puncture and UV-induced wounds in internodal cells of Nitella flexilis and Chara corallina. Immediately after puncture, wounds were passively sealed with a plug of solid vacuolar inclusions, onto which a bipartite wound wall was actively deposited. The outer, callose-containing amorphous layer consisted of remnants of FM1-43- and LTred-labelled organelles, ER cisternae and polysaccharide-containing secretory vesicles, which became deposited in the absence of membrane retrieval (compound exocytosis). During formation of the inner cellulosic layer, exocytosis of secretory vesicles with the newly formed plasma membrane is coupled to endocytosis via coated vesicles. Migration of FM1-43- and LTred-stained organelles, ER and secretory vesicles towards the cell cortex and deposition of a bipartite wound wall could also be induced by spot-like irradiation with ultraviolet light. Cytochalasin D reversibly inhibited the accumulation and deposition of organelles. Our study indicates that active actin-dependent deposition of putative recycling endosomes is required for wound healing (plasma membrane repair) and supports the hypothesis that deposition of ER cisternae helps to restore wounding-disturbed Ca(2+) metabolism.  相似文献   

18.
Superficial cells of the oral mucosal epithelium in the carp and the cytoskeleton of the epithelial cells are examined by scanning and transmission electron microscopy. Microridges are formed on the surface of the epithelium. Epithelial cells contain two types of vesicles: mucous secretory vesicles and coated vesicles. Most of the mucous vesicles are situated in the center of the cell near the Golgi apparatus. In freeze-fracture replicas, intramembranous particles are abundant in the membranes of the secretory vesicles but rare in the apical plasma membrane. Coated vesicles are situated in the apical and subapical cytoplasm. A great number of thick filaments, considered to be keratin filaments, run randomly throughout the cell to form a meshwork. Thick filaments, which are sparse in the central cytoplasm, are connected to the membranes of the secretory vesicles and other membranous organelles. A layer of closely packed thin filaments, considered to be actin filaments, is found just beneath the apical plasma membrane. Microtubules also occur in the apical cytoplasm and run almost parallel to the cell surface. Both kinds of vesicles are connected to the thin and thick filaments. Their functional significance in the regulation of membrane at the free surface is discussed.  相似文献   

19.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

20.
John R. Rowley  Gunnar Erdtman 《Grana》2013,52(2-3):517-567
Four phenomena were observed in a study of Populus tremula and P. tremula f. gigas microspores from before microspore mitosis through mature pollen which may have general significance in the ontogeny of pollen grains: 1) The exine and orbicules (Ubisch bodies) were covered by membranes. 2) The exine and the tapetal surfaces where orbicules form were covered by a polysaccharide (PAS positive) coat until after microspore mitosis; subsequently the tapetum became plasmodial. 3) Material having the staining characteristics of the nexine 2 (endexine in the sense of Fægri) accumulated on membranes in microspores in the space between the exine and the plasma membrane. That material was almost completely gone from the wall in mature pollen. The membranes on which material had accumulated migrated through the exine. Following passage through the exine these membranes were seen as empty fusiform vesicles in micrographs of anthers prepared by commonly used methods. 4) At about microspore mitosis when the cellulosic intine begins to form, microtubules about 240 A in diameter occurred near the plasma membrane and generally parallel with it. Positive acid phosphatase reactions in tapetal cells together with the morphology of orbicules and other tapetal organelles suggest that the wall of orbicules, which is like the pollen exine, may form as a residual product of a lysosome system.

Sections of mature Salix humilis pollen were compared with Populus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号