首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Malignant transformation of gastrointestinal stromal tumors (GISTs) is correlated with poor prognosis; however, the underlying biological mechanism is not well understood. In the present study, low-risk (LR) GISTs, GISTs categorized as high-risk based on tumor size (HBS), and on mitotic rate (HBM) were collected for RNA sequencing. Candidate hub lncRNAs were selected by Oncomine analysis. Expression of a selected hub lncRNA, DNM3OS, and its correlation with patients’ prognosis were analyzed using FISH staining, followed with the determination of function and underlying mechanism. Our results revealed a series of key pathways and hub lncRNAs involved in the malignant transformation of GISTs. Oncomine analysis revealed a tight association between clinical signatures and DNM3OS and suggested that DNM3OS is a hub lncRNA that is involved in the Hippo signaling pathway. In addition, DNM3OS was upregulated in HBS, HBM, and HBS/M GIST and correlated with worse prognosis in patients with GISTs. In addition, DNM3OS promoted GIST cell proliferation and mitosis by regulating the expression of GLUT4 and CD36. Collectively, these results improve our understanding of the malignant transformation of GISTs and unveil a series of hub lncRNAs in GISTs.Subject terms: Sarcoma, Long non-coding RNAs  相似文献   

2.
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumours with various clinical characteristics. These tumours generally exhibit complex karyotypes. Few studies of genomic imbalances have been performed exclusively in subgroups of larynx cancer samples at different stages of the disease. In the present study, chromosomal gains and losses were investigated in 52 larynx tumours, by using comparative genomic hybridization (CGH). The mean number of observed alterations was 37.7 per tumour. The most common sites of losses were 1p, 13q, Xp, and the most common gains were located in 1p, 9q, 16q. The overall number of gains was negatively associated with cancer grading. G1 tumours were also characterized by a higher frequency of deletions in 13q32 and amplifications in 1q23, than tumours in other grades (p < 0.05). The frequency of losses of 13q22 also positively associated with tumour size. There was no association between the frequency of losses in 13q and the presence of lymph node metastases at the time of diagnosis. Another statistically significant association was observed for gains at 1q22-23 and tumour size (p < 0.01). No statistically significant difference in the frequency of most common imbalances was detected between primary tumours with lymph node metastases and those without metastases. In conclusion, we discovered a significant involvement of 13q deletions in the progression of larynx cancer. All the other significant changes observed in the present study were reported previously as being important for HNSCC progression. It seems that multiple genes are disrupted in the process of neoplastic transformation in the larynx, and the networks of events remain to be elucidated.  相似文献   

3.
We previously reported molecular karyotype analysis of invasive breast tumour core needle biopsies by comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) (Walker et al, Genes Chromosomes Cancer, 2008 May;47(5):405-17). That study identified frequently recurring gains and losses involving chromosome bands 8q22 and 8p21, respectively. Moreover, these data highlighted an association between 8q22 gain and typically aggressive grade 3 tumors. Here we validate and extend our previous investigations through FISH analysis of tumor touch imprints prepared from excised breast tumor specimens. Compared to post-surgical tumor excisions, core needle biopsies are known to be histologically less precise when predicting tumor grade. Therefore investigating these chromosomal aberrations in tumor samples that offer more reliable pathological assessment is likely to give a better overall indication of association. A series of 60 breast tumors were screened for genomic copy number changes at 8q22 and 8p21 by dual-color FISH. Results confirm previous findings that 8p loss (39%) and 8q gain (74%) occur frequently in invasive breast cancer. Both absolute quantification of 8q22 gain across the sample cohort, and a separate relative assessment by 8q22:8p21 copy number ratio, showed that the incidence of 8q22 gain significantly increased with grade (p = 0.004, absolute and p = 0.02, relative). In contrast, no association was found between 8p21 loss and tumor grade. These findings support the notion that 8q22 is a region of interest for invasive breast cancer pathogenesis, potentially harboring one or more genes that, when amplified, precipitate the molecular events that define high tumor grade.  相似文献   

4.
Leiomyosarcomas comprise a group of malignant soft-tissue tumors with smooth-muscle differentiation. In this study, 14 cases of leiomyosarcoma were screened for changes in relative chromosome copy number by comparative genomic hybridization. A high number of imbalances (mean, 16.3; range, 6-26) was detected, with chromosomal gains occurring about twice as much as losses. The most frequent gains were found in 5p15, 8q24, 15q25-->q26, 17p, and Xp (43% to 50%), whereas the most frequent losses were found in 10q and 13q (50% and 78%, respectively). Twenty high-level amplifications affecting 15 different chromosomal subregions were detected in nine different tumors. In three leiomyosarcomas, sequences on chromosome arm 17p were found to be highly amplified, with a minimal overlapping region on subbands 17p12-->p11. We further discovered that the Smith-Magenis syndrome critical region on 17p11.2 is included in the 17p amplicons of two leiomyosarcoma cases. Using probes flanking this genetically unstable region, a mean of 14 and 22 signals per nucleus, respectively, was detected in both leiomyosarcomas by fluorescence in situ hybridization. In conclusion, this analysis identifies a number of characteristic chromosomal imbalances in leiomyosarcomas and provides evidence for the localization of potential oncogenes and tumor suppressor genes active in leiomyosarcoma genomes.  相似文献   

5.
Conventional cytogenetic analyses and comparative genomic hybridization have revealed a complex and even chaotic nature of chromosomal aberrations in pleural malignant mesothelioma (MM). We set out to describe the complex gene copy number changes and screen for novel genetic aberrations using a high-density oligonucleotide microarray platform for comparative genomic hybridization (aCGH) of a series of 26 well-characterized MM tumor samples. The number of copy number changes varied from zero to 40 per sample. Gene copy number losses predominated over gains, and the most frequent region of loss was 9p21.3 (17/26 cases), the locus of CDKN2A and CDKN2B, both known to be commonly lost in MM. The most recurrent minimal regions of losses were 1p31.1--> p13.2, 3p22.1-->p14.2, 6q22.1, 9p21.3, 13cen-->q14.12, 14q22.1-->qter, and 22qcen-->q12.3. Previously unreported gains included 9p13.3, 7p22.3-->p22.2, 12q13.3, and 17q21.32-->qter. The results suggest that gene copy number losses are a major mechanism of MM carcinogenesis and reveal a recurrent pattern of copy number changes in MM.  相似文献   

6.
Oncogenic mutations in gastrointestinal stromal tumors (GISTs) predict prognosis and therapeutic responses to imatinib. In wild-type GISTs, the tumor-initiating events are still unknown, and wild-type GISTs are resistant to imatinib therapy. We performed an association study between copy number alterations (CNAs) identified from array CGH and gene expression analyses results for four wild-type GISTs and an imatinib-resistant PDGFRA D842V mutant GIST, and compared the results to those obtained from 27 GISTs with KIT mutations. All wild-type GISTs had multiple CNAs, and CNAs in 1p and 22q that harbor the SDHB and GSTT1 genes, respectively, correlated well with expression levels of these genes. mRNA expression levels of all SDH gene subunits were significantly lower (P≤0.041), whereas mRNA expression levels of VEGF (P=0.025), IGF1R (P=0.026), and ZNFs (P<0.05) were significantly higher in GISTs with wild-type/PDGFRA D842V mutations than GISTs with KIT mutations. qRT-PCR validation of the GSTT1 results in this cohort and 11 additional malignant GISTs showed a significant increase in the frequency of GSTT1 CN gain and increased mRNA expression of GSTT1 in wild-type/PDGFRA D842V GISTs than KIT-mutant GISTs (P=0.033). Surprisingly, all four malignant GISTs with KIT exon 11 deletion mutations with primary resistance to imatinib had an increased GSTT1 CN and mRNA expression level of GSTT1. Increased mRNA expression of GSTT1 and ZNF could be predictors of a poor response to imatinib. Our integrative approach reveals that for patients with wild-type (or imatinib-resistant) GISTs, attempts to target VEGFRs and IGF1R may be reasonable options.  相似文献   

7.
Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12 approximately q44 (Chr1:142188905-246084832), 7 (over the whole chromosome), 2p25.3 approximately p16.3 (Chr2:18179-47899074), and 17q 21.32 approximately q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1 approximately q21.3 (Chr14:37666271- 47282550), and 22q13.1 approximately q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.  相似文献   

8.
To identify DNA amplifications in sarcomas, comparative genomic hybridization was performed on 27 cases that were likely to display high-level DNA copy number gains. In all cases, chromosome banding analysis had revealed homogeneously staining regions or double minutes, i.e., cytogenetic signs of gene amplification. In most cases, gains predominated over losses. Low-level amplifications (ratio 1.3:1.5) were seen in 20 cases. High-level amplifications (ratio >1.5) exceeded the frequencies seen in published, unselected sarcomas of similar histotypes and were detected in 16 tumors: 4/4 osteosarcomas, 5/8 malignant fibrous histiocytomas, 3/7 leiomyosarcomas, 1/2 myosarcomas, 0/1 liposarcoma, 0/1 rhabdomyosarcoma, 1/1 pleomorphic sarcoma, 0/1 myxofibrosarcoma, 1/1 malignant mesenchymona, and 1/1 malignant schwannoma, with two to four chromosomal regions involved in nine tumors. Recurrent amplifications involved 1p33-p32, 5p15-p14, 7pter-p12, 7q21-qter, 8q21.3-qter, 11q22-q23, 16p13.2-p12, 19q12-q13.1, 20q11.2-qter, and 22q12-q13. Most of the recurrent gains/amplifications we detected have been reported in sarcomas previously. A novel gain/amplification was seen at 2q14.3-q21 in five cases of four sarcoma types. The disparate pattern of amplified sequences, the poor correspondence between the localization of low- and high-level amplifications, and the chromosomal position of homogeneously staining regions suggest the involvement of many genes in the amplifications and that the genes rarely maintain their native position in these tumors.  相似文献   

9.
The aim of the present study was to investigate chromosomal alterations in a large set of homogeneous tumors, 98 endometrioid adenocarcinomas. We also wanted to evaluate differences in chromosomal alterations in the different groups of tumors in relation to stage, survival and invasive or metastatic properties of the tumors. Comparative genomic hybridization (CGH) was used to detect chromosomal alterations in tissue samples from 98 endometrioid adenocarcinomas. All chromosomes were involved in DNA copy number variations at least once in the tumor material, but certain changes were recurrent and rather specific. Among the specific changes, it was possible to identify 39 chromosomal regions displaying frequent DNA copy number alterations. The most frequent alteration was detected at 1q25-->q42, in which gains were found in 30 cases (30%). Gains at 19pter-->p13.1 were detected in 26 tumors (26%) and at 19q13.1-->q13.3 in 19 tumors (19%). Increased copy numbers were also detected at 8q (8q21-->q22 and 8q22-->qter), at a relatively high rate, in 17 cases (17%). Furthermore, gains at 10q21-->q23 and 10p were found in 14 (14%) and 13 cases (13%), respectively. The most common losses were found in the three regions 4q22-->qter, 16q21-->qter and 18q21-->qter, all of which were detected in eight of the 98 tumors (8%). We also detected differences between the tumors from deceased patients and from survivors. Gain at 1q25-->q42 was more commonly detected in the tumors from patients who died of cancer. We noted that the regions most affected differed in the different surgical stages (I-IV). The results of the CGH analysis identify specific chromosomal regions affected by copy number changes, appropriate objects for further genetic studies.  相似文献   

10.
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS.  相似文献   

11.
Endometriosis is characterized by infertility and pelvic pain in 10-15% of women of reproductive age. The genetic events involved in endometriotic cell expansion remain in large part unknown. To identify genomic changes involved in development of this disease, we examined a panel of 18 selected endometriotic tissues by comparative genomic hybridization (CGH), a molecular cytogenetic method that allows screening of the entire genome for chromosomal gains and/or losses. The study was performed on native, nonamplified DNA extracted from manually dissected endometriotic lesions. Recurrent copy number losses on several chromosomes were detected in 15 of 18 cases. Loss of chromosome 1p and 22q were detected in 50% of the cases. Additional common losses occurred on chromosomes 5p (33%), 6q (27%), 7p(22%), 9q (22%), 16 (22%) as well as on 17q in one case. Gain of DNA sequences were seen at 6q, 7q and 17q in three cases. To validate the CGH data, selective dual-color FISH was performed using probes for the deleted regions on chromosomes 1, 7 and 22 in parallel with the corresponding centromeric probes. Cases showing deletion by CGH all had two signals at 1p36, 7p22.1 and 22q12 in less than 30% of the nuclei in comparison to the double centromeric labels found in more than 85% of the cells. These findings indicate that genes localized to previously undescribed chromosomal regions play a role in development and progression of endometriosis.  相似文献   

12.
Comparative genomic hybridization (CGH) has been applied to characterize 61 primary renal cell carcinomas derived histogenetically from the proximal tubulus. The tumor samples comprised 46 clear-cell renal cell carcinomas (ccRCCs) and 15 papillary renal cell carcinomas (pRCCs). Changes in the copy number of entire chromosomes or subregions were detected in 56 tumors (92%). In ccRCCs, losses of chromosome 3 or 3p (63%); 14q (30%); 9 (26%); 1 and 6 or 6q (17% each); 4 and 8 or 8p (15% each); 22 (11%); 2 or 2q and 19 (9% each); 7q, 10, 16, 17p, 18, and Y (7% each); and 5, 11, 13, 15, and 21 (4% each) were detected. Most frequent genomic gains in ccRCC were found on chromosome 5 (63%); 7 (35%); 1 or 1q (33%); 2q (24%); 8 or 8q, 12, and 20 (20% each); 3q (17%); 16 (15%); 19 (13%); 6 and 17 or 17q (11% each); and 4, 10, 11, 21, and Y (9% each). In pRCCs, gains in the copy number of chromosomes 7 and 17 (7/15, each) and 16 and 20 (6/15, each) were frequent. One pRCC showed amplification of subchromosome regions 2q22-->q33, 16q, 17q and the entire X chromosome. In pRCC, losses were less frequently seen than gains. Losses of chromosomes 1, 14, 15, and Y (3/15 each) and 2, 4, 6, and 13 (2/15 each) were observed. In ccRCCs, statistical evaluation revealed significant correlations of chromosomal imbalances with tumor stage and grade, i.e., a gain in copy number of chromosome 5 correlated positively with low tumor grade, whereas a gain of chromosomes 10 and 17 correlated positively with high tumor grade. Furthermore, loss of chromosome 4 correlated positively with high tumor stage.  相似文献   

13.
The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP)-arrays to define those chromosomal regions which most commonly harbour copy number (CN) alterations and loss of heterozygozity (LOH) in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70%) extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9) versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11). From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterogenity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.  相似文献   

14.
15.
Multiple chromosomal imbalances have been identified in breast cancer using comparative genomic hybridization (CGH). Their association with the primary tumors' potential for building distant metastases is unknown. In this study we have investigated 39 invasive breast carcinomas with a mean follow-up period of 99 months (max. 193 months) by CGH to determine the prognostic value of chromosomal gains and losses.The mean number of chromosomal imbalances per tumor was 6.5+/-0.7 (range 2 to 18). The most frequent alterations identified in more than 1/3 of cases were gains on chromosomes 11q13, 12q24, 16, 17, and 20q, and losses on 2q and 13q. A significantly different frequency of chromosomal aberrations (p相似文献   

16.
The present study was aimed at discovering DNA copy number alterations (CNAs) involved in the carcinogenesis of stomach and at understanding their clinicopathological significances in the Korean population. DNA copy numbers were analyzed using Agilent 244K or 400K array comparative genomic hybridization (aCGH) in fresh-frozen tumor and matched normal tissues from 40 gastric cancer patients. Some of the detected CNA regions were validated using multiplex ligation-dependent probe amplification (MLPA) in six of the 40 patients and customized Agilent 60K aCGH in an independent set of 48 gastric cancers. The mRNA levels of genes at common CNA regions were analyzed using quantitative real-time PCR. Copy number gains were more common than losses across the entire genome in tumor tissues compared to matched normal tissues. The mean number of alterations per case was 64 for gains and 40 for losses, and the median aberration length was 44016 bp for gains and 4732 bp for losses. Copy number gains were frequently detected at 7p22.1 (20%), 8q24.21 (27%–30%), 8q24.3 (22%–48%), 13q34 (20%–31%), and 20q11-q13 (25%–30%), and losses at 3p14.2 (43%), 4q35.2 (27%), 6q26 (23%), and 17p13.3 (20%–23%). CNAs at 7p22.1, 13q34, and 17p13.3 have not been reported in other populations. Most of the copy number losses were associated with down-regulation of mRNA levels, but the correlation between copy number gains and mRNA expression levels varied in a gene-dependent manner. In addition, copy number gains tended to occur more commonly in intestinal-type cancers than in diffuse-type cancers. In conclusion, the present study suggests that copy number gains at 8q24 and 20q11-q13 and losses at 3p14.2 may be common events in gastric cancer but CNAs at 7p22.1, 13q34, and 17p13.3 may be Korean-specific.  相似文献   

17.
Here we tested the prognostic impact of genomic alterations in operable localized pancreatic ductal adenocarcinoma (PDAC). Fifty-two formalin-fixed and paraffin-embedded primary PDAC were laser micro-dissected and were investigated by comparative genomic hybridization after whole genome amplification using an adapter-linker PCR. Chromosomal gains and losses were correlated to clinico-pathological parameters and clinical follow-up data. The most frequent aberration was loss on chromosome 17p (65%) while the most frequent gains were detected at 2q (41%) and 8q (41%), respectively. The concomitant occurrence of losses at 9p and 17p was found to be statistically significant. Higher rates of chromosomal losses were associated with a more advanced primary tumor stage and losses at 9p and 18q were significantly associated with presence of lymphatic metastasis (chi-square: p = 0.03, p = 0.05, respectively). Deletions on chromosome 4 were of prognostic significance for overall survival and tumor recurrence (Cox-multivariate analysis: p = 0.026 and p = 0.021, respectively). In conclusion our data suggest the common alterations at chromosome 8q, 9p, 17p and 18q as well as the prognostic relevant deletions on chromosome 4q as relevant for PDAC progression. Our comprehensive data from 52 PDAC should provide a basis for future studies with a higher resolution to discover the relevant genes located within the chromosomal aberrations identified.  相似文献   

18.
Comparative genomic hybridization (CGH) was employed to survey genomic regions with increased and decreased copy number of the DNA sequence in 15 endometrial cancers [10 cases with microsatellite instability positive (MI+) and 5 cases with MI–]. Twelve of these 15 tumors (80%) showed abnormalities in copy number at one or more of the chromosomal regions. There were no regions with frequent chromosomal losses. Conversely, 11 of 15 cases (73%) showed gains on chromosome arms 1q (8/15; 53%) and/or 8q (6/15; 40%). Concordant gains of both chromosome arms 1q and 8q were observed in all three endometrial cancers of histological grade 3. These results suggest that these two chromosomal regions may contain genes whose increased expression contributes to development and/or progression of endometrial carcinogenesis. Two cases were further analyzed by fluorescence in situ hybridization (FISH) using three probes on chromosome 1 and two probes on chromosome 8 to more accurately determine increases in copy number. We found gains of chromosome 1q to 2.9–3.6 copies per cell and on 8q to 4.4 copies per cell. Received: 9 March 1997 / Accepted: 2 June 1997  相似文献   

19.
Characteristic genetic changes underlying the metastatic progression of malignant melanoma is incompletely understood. The goal of our study was to explore specific chromosomal alterations associated with the aggressive behavior of this neoplasm. Comparative genomic hybridization was performed to screen and compare genomic imbalances present in primary and metastatic melanomas. Sixteen primary and 12 metastatic specimens were analyzed. We found that the pattern of chromosomal aberrations is similar in the two subgroups; however, alterations present only in primary and/or metastatic tumors were also discovered. The mean number of genetic changes was 6.3 (range 1-14) in primary and 7.8 (range 1-16) in metastatic lesions. Frequent losses involved 9p and 10q, whereas gains most often occurred at 1q, 6p, 7q, and 8q. Distinct, high-level amplifications were mapped to 1p12-p21 and 1p22-p31 in both tumor types. Amplification of 4q12-q13.1, 7q21.3-qter and 8q23-qter were detected only in primary tumors. The 20q13-qter amplicon was present in a metastatic tumor. The number of genetic alterations were significantly higher in primary tumors which developed metastases within one year after the surgery compared to tumors without metastasis during this time period. Fluorescence in situ hybridization with centromeric and locus-specific probes was applied to validate CGH results on a subset of tumors. Comparison of FISH and CGH data gave good correlation. The aggressive behavior of melanoma is associated with accumulation of multiple genetic alterations. Chromosome regions, which differ in the primary and metastatic lesions, may represent potential targets to identify metastases-related chromosomal alterations.  相似文献   

20.
High-grade ovarian serous carcinomas (HGSC) are characterized by TP53 mutations and non-random patterns of chromosomal anomalies, where the nature of the TP53 mutation may correlate with clinical outcome. However, the frequency of common somatic genomic events occurring in HGSCs from demographically defined populations has not been explored. Whole genome SNP array, and TP53 mutation, gene and protein expression analyses were assessed in 87 confirmed HGSC samples with clinical correlates from French Canadians, a population exhibiting strong founder effects, and results were compared with independent reports describing similar analyses from unselected populations. TP53 mutations were identified in 91% of HGSCs. Anomalies observed in more than 50% of TP53 mutation-positive HGSCs involved gains of 3q, 8q and 20q, and losses of 4q, 5q, 6q, 8p, 13q, 16q, 17p, 17q, 22q and Xp. Nearly 400 regions of non-overlapping amplification or deletion were identified, where 178 amplifications and 98 deletions involved known genes. The subgroup expressing mutant p53 protein exhibited significantly prolonged overall and disease-free survival as compared with the p53 protein null subgroup. Interestingly, a comparative analysis of genomic landscapes revealed a significant enrichment of gains involving 1q, 8q, and 12p intervals in the subgroup expressing mutant p53 protein as compared with the p53 protein null subgroup. Although the findings show that the frequency of TP53 mutations and the genomic landscapes observed in French Canadian samples were similar to those reported for samples from unselected populations, there were differences in the magnitude of global gains/losses of specific chromosomal arms and in the spectrum of amplifications and deletions involving focal regions in individual samples. The findings from our comparative genomic analyses also support the notion that there may be biological differences between HGSCs that could be related to the nature of the TP53 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号