首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Five nitrate:ammonium ratios at two N-levels were tested with and without nitrapyrin [2 chloro-6-(trichloromethyl) pyridine] for grain production on a sandy soil. Treatments were applied to field maize as nutrient solutions, in one application, six weeks after planting. Nytrapyrin resulted in an increase in grain yield at a nitrate:ammonium ratio of 1:3 but in a decrease at a 0:1 ratio. The optimum nitrate:ammonium ratio was close to 1:3 with nitrapyrin and close to 3:1 without nitrapyrin. Nitrapyrin had an effect on NH4 +-N in the topsoil and NO3 -N in the subsoil at 70 days after application. Interactions of nitrate:ammonium ratios and N-levels were shown for leaf N concentration, soil mineral N and soil pH.  相似文献   

2.
R. H. Teyker 《Plant and Soil》1992,144(2):289-295
Growth of maize seedlings can be improved by enhanced ammonium nutrition, but placing fertilizer anhydrous ammonia close to seedlings introduces the risk of ammonia toxicity. In this study, growth and root elongation response to rates of closely placed NH4OH bands were investigated in two contrasting maize hybrids. Seven rates of NH4OH, ranging from 0 to 200 mg N kg-1 soil were injected into the center of each pot. A single rate of Ca(NO3)2-N was included to compare hybrids for N form preference at a moderate N rate. Three seedlings per pot were planted 5.7 cm from the injection point.Hybrid B73×LH51 produced a quadratic response in shoot growth to NH4OH rates, whereas LH74×LH123 exhibited a significant linear decline in response to NH4OH rate. Root length density sampled from the fertlized zone declined linearly in response to NH4OH rate while a slight increase in root length density in unfertilized zones was observed at intermediate NH4OH rates. Hybrids did not differ in root length density in either zone.The hybrid with greater tolerance of NH4OH rates (B73×LH51) also showed a preference in shoot growth for NH4-over NO3-N at 66.7 mg N kg-1 compared to LH74×LH123. On average across hybrids, nitrate concentrations of xylem exudate collected from detopped plants were 14.5 mmol g-1 for Ca(NO3)2 treatments and 1.5 mmol g-1 for NH4OH treatments, indicating that contrasting N-form nutrition resulted from fertilizer treatments. Malate concentrations were higher in the NH4OH treatment indicating that this organic acid anion may substitute for the negative charge of nitrate during enhanced ammonium nutrition in maize.The results suggest that potentially useful genetic variation exists in maize for N form preference and for tolerance to increasing ammonical-N rates.  相似文献   

3.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

4.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

5.
王胤  姚瑞玲 《广西植物》2021,41(6):922-929
马尾松属高氮需求树种,然而在苗木培育中马尾松对氮素,尤其是不同形态氮素的需求尚不明确.该文以马尾松组培苗为试验材料,采用基质培养方法,针对硝态氮、铵态氮两种氮素形态均分别设置了2、4、8、16 mmol·L-14个处理,以不添加氮素为对照,对苗木的高径生长、根构型参数(总根长、总表面积、总体积、平均直径和根尖数)以及生...  相似文献   

6.
汪庆兵  张建锋  陈光才  孙慧  吴灏  张颖  杨泉泉  王丽 《生态学报》2015,35(16):5364-5373
采用水培法,研究了旱柳苗在外源添加不同氮水平(贫氮、中氮、富氮、过氮)的铵态氮(NH+4-N)和硝态氮(NO-3-N)的生长、氮吸收、分配和生理响应。结果表明:一定范围氮浓度的增加能够促进旱柳苗的生长,但过量氮会抑制其生长,且NH+4-N的抑制作用大于NO-3-N;两种氮处理下,旱柳表现出对NH+4-N的吸收偏好,在同一氮水平时,旱柳各部位氮原子百分含量Atom%15N(AT%)、15N吸收量和来自氮源的N%(Ndff%)均为NH+4-N处理大于NO-3-N处理,且随着氮浓度的增加,差异增大,且在旱柳各部位的分布为根﹥茎﹥叶;2种氮素过量和不足均会对旱柳根和叶生理指标产生不同的影响,其中在过氮水平时,NH+4-N和NO-3-N处理下根系活力比对照减少了50.61%和增加了19.53%;在过氮水平时,NH+4-N处理柳树苗根总长、根表面积、根平均直径、根体积和侧根数分别对照下降了30.92%、29.48%、19.44%、27.01%和36.41%,NO-3-N处理柳树苗相应的根系形态指标分别对对照下降了1.66%、5.65%、1.49%、5.06%和25.72%。可见,高浓度NH+4-N对旱柳苗的胁迫影响大于NO-3-N,在应用于水体氮污染修复时可通过改变水体无机氮的比例,削弱其对旱柳的影响,从而提高旱柳对水体氮污染的修复效果。  相似文献   

7.
An hydroponic experiment with a simulated water stress induced by PEG (6000) was conducted in a greenhouse to study the effects of nitrate (NO3 ), ammonium (NH4 +) and the mixture of NO3 and NH4 +, on water stress tolerance of rice seedlings. Rice (Shanyou 63) was grown under non- or simulated water stress condition (10% (w/v) PEG, MW6000) with the 3 different N forms during 4 weeks. Under non-stressed condition no difference was observed among the N treatments. Under simulated water stress, seedlings grown on N-NO3 were stunted. Addition of PEG did not affect rice seedling growth in the treatment of only NH4 + supply but slightly inhibited the rice seedling growth in the treatment of mixed supply of NO3 and NH4 +. Simulated water stress, when only N-NH4 + was present, did not affect leaf area and photosynthesis rate, however, both parameters decreased significantly in the NO3 containing solutions. Under water stress, Rubisco content in newly expanded leaves significantly increased in the sole NH4 + supplied plants as compared to that in plants of the other two N treatments. Under water stress, the ratio of carboxylation efficiency to Rubisco content was, respectively, decreased by 13 and 23% in NH4 + and NO3 treatments, respectively. It is concluded that, water stress influenced the Rubisco activity than stomatal limitation, and this effects could be regulated by N forms. Responsible Editor: Herbert Johannes Kronzucker. Shiwei Guo and Gui Chen contributed equally to this paper.  相似文献   

8.
Three-year-old Scots pine (Pinus sylvestris) trees were grown on a sandy forest soil in pots, with the objective to determine their NH4/NO3 uptake ratio and proton efflux. N was supplied in three NH4-N/NO3-N ratios, 3:1, 1:1 and 1:3, either as 15NH4+14NO3 or as 14NH4+15NO3. Total N and 15N acquisition of different plant parts were measured. Averaged over the whole tree, the NH4/NO3 uptake ratios throughout the growing season were found to be 4.2, 2.5, and 1.5 for the three application ratios, respectively. The excess cation-over-anion uptake value (Ca-Aa) appeared to be linearly related to the natural logarithm of the NH4/NO3 uptake ratio. Further, this uptake ratio was related to the NH4/NO3 ratio of the soil solution. From these relationship it was estimated that Scots pine exhibits an acidifying uptake pattern as long as the contribution of nitrate to the N nutrition is lower than 70%. Under field circumstances root uptake may cause soil acidification in the topsoil, containing the largest part of the root system, and soil alkalization in deeper soil layers.  相似文献   

9.
The effect of two N-forms (NH4 + and NO3 ) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland's nutrient solution containing 8 mM N as NH4 + or NO3 ·, and salinized with and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH4-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO3-supplied plants had significa concentration of leaf P than that of NH4-supplied plants at varying salt treatments. Salinity of the rooting med did not show any significant effect on Na+ concentrations of leaves or roots of plants subjected to two differen N. NH4-treated plants generally had greater concentrations of Cl in leaves and roots and lower K+ content in leaves than NO3-supplied plants. Ca2+ concentrations of leaves and roots and Mg2+ concentrations of leaves decreased in NH4-supplied plants due to NaCl, but they remained unaffected in NO3-treated plants.  相似文献   

10.
Net photosynthetic rate (P N) of tobacco plants grown with NH4-N as the only N source was the lowest all the times, while P N grown only with NO3-N was the greatest until 22nd day, and P N grown with both NO3-N and NH4-N (1 : 1) was the greatest. Maximal photochemical efficiency of photosystem 2 (PS2), Fv/Fm, and actual quantum yield of PS2 under actinic irradiation (ΦPS2) in plants grown with only NH4-N were greatest at early stage and then decreased and were smaller than those of other treatments. Photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qNP) in the NH4-N plants were the greatest at all times. Hence excessive NH4-N can decrease not only photochemical efficiency but also the efficiency of utilization of photon energy absorbed by pigments for photosynthesis. Therefore, excessive NH4-N is a hindrance to photosynthesis of flue-cured tobacco. On the other hand, tobacco cultured with an appropriate mixture of NO3-N with NH4-N can sufficiently utilize photon energy and increase the efficiency of energy transformation.  相似文献   

11.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

12.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Summary The purpose of this study was to investigate the phytotoxicity of nitrapyrin 2-chloro-6-(trichloromethyl)pyridine to sunflower (Helianthus annuus L.) under different N regimes and to see if N forms affect the phytotoxicity of nitrapyrin. Sunflower was grown in pot culture for 21 days and was fertilized with (NH4)2SO4, NH4NO3 and NaNO3 to provide 0, 100 and 200 ppm N and with nitrapyrin application of 0 and 20 ppm. All N-treated sunflower plants in all N regimes and regardless of titrapyrin treatment produced more root and shoot dry weights and contained a significantly higher N than untreated check. Nitrapyrin toxicity appeared as a curling of leaf margin and a tendril type of stem growth, the visible toxicity symptoms decreased in the order: (NH4)2SO4>NH4NO3>NaNO3. Furthermore nitrapyrin addition suppressed sunflower growth in each N regime, the suppressing effect being greater with (NH4)2SO4 and NH4NO3 than as with NaNO3. Although, shoot growth from plants receiving nitrapyrin was not significantly affected by any N regime, root growth of nitrapyrin-treated plants was somewhat restricted by NH4 +−N nutrition relative to NO3 −N nutrition.  相似文献   

14.
Two hybrids of maize (Zea mays L.) differing in resistance to drought, were grown in chernozem soil in a greenhouse and were fertilized with two different forms of nitrogen: Ca(NO3)2 and (NH4)2SO4 in concentrations corresponding to 100 kg of N ha-1. After emergence of the 4th leaf, plants were exposed to drought. During the drought period, the parameters of plant water status (water potential, osmotic potential, turgor pressure and relative water content) and chlorophyll a+b concentration were monitored every two days. N and K concentration and accumulation over the drought period were also monitored.Next to differences in adaptability of the two hybrids to drought, the results demonstrate different adaptability of NH4 and NO3-treated plants within each hybrid. NH4-plants of each hybrid maintain higher turgor pressure during the drought by better osmotic adaptation. Especially significant differences appear between chlorophyll (a+b) values of NH4 and NO3-treated plants and as affected by drought. Chlorophyll concentrations of NH4-plants are higher than those of NO3-plants both in control and droughted plants. NH4 plants show a characteristic initial chlorophyll increase at the beginning of the drought period while in NO3 plants chlorophyll constantly decreases throughout the whole drought period. The influence of the nitrogen form on chlorophyll concentration changes during drought does not appear to be affected by regulation of the K concentration.  相似文献   

15.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

16.
Alfalfa (Medicago sativa L.) N-sufficient plants were fed 1·5 mM N in the form of NO3, NH4+ or NO3 in conjunction with NH4+, or were N-deprived for 2 weeks. The specific activity of phosphoenolpyruvate carboxylase (PEPC) from the non-nodulated roots of N-sufficient plants was increased in comparison with that of N-deprived plants. The PEPC value was highest with NO3 nutrition, lowest with NH4+ and intermediate in plants that were fed mixed salts. The protein was more abundant in NO3-fed plants than in either NH4+- or N mixed-fed plants. Nitrogen starvation decreased the level of PEPC mRNA, and nitrate was the N form that most stimulated PEPC gene expression. The malate content was significantly lower in NO3-deprived than in NO3-sufficient plants. Root malate accumulation was high in NO3-fed plants, but decreased significantly in plants that were fed with NH4+. The effect of malate on the desalted enzyme was also investigated. Root PEPC was not very sensitive to malate and PEPC activity was inhibited only by very high concentrations of malate. Asparagine and glutamine enhanced PEPC activity markedly in NO3-fed plants, but failed to affect plants that were either treated with other N types or N starved. Glutamate and citrate inhibited PEPC activity only at optimal pH. N-nutrition also influenced root nitrate and ammonium accumulation. Nitrate accumulated in the roots of NO3- and (NO3 + NH4+)-fed plants, but was undetectable in those administered NH4+. Both the nitrate and the ammonium contents were significantly reduced in NO3- and (NO3 + NH4+)-starved plants. Root accumulation of free amino acids was strongly influenced by the type of N administered. It was highest in NH4+-fed plants and the most abundant amides were asparagine and glutamine. It was concluded that root PEPC from alfalfa plants is N regulated and that nitrate exerts a strong influence on the PEPC enzyme by enhancing both PEPC gene expression and activity.  相似文献   

17.
A comparison of the effects of foliar and soil N application was made in field-grown mature fruiting Gala/M9 apple trees (Malus domestica Borkh) in 2001 and 2002 growing seasons under Pacific Northwest growing conditions in southern British Columbia, Canada. The trees, six years old at the start of the experiment, were treated: (1) with 5 g/l urea sprays supplied every two weeks (7 times) from mid May to mid August (total about 50 g N/tree/year), (2) with the same amount of N applied to the soil with the same timing and quantity as for the foliar treatment, and (3) with no N (control). Leaf color (as SPAD readings) and N concentrations (mg/g), and soil NH4+-N and NO3-N were measured periodically throughout the two seasons. Leached NO3-N was monitored monthly via an anion exchange probe from June to October in 2001 and from May to November in 2002. Shoot length was measured in October and N concentration of one-year-old wood and roots was determined in December of each growing s eason. Soil N application significantly increased shoot length relative to control or foliar N application. Leaf color, leaf N, and N concentration of one-year-old wood and roots were similarly increased relative to control by both soil and foliar N application. These treatments also increased fruit yield relative to control. There was no significant difference in yield and fruit quality between soil and foliar N applications. Soil N application increased soil NH4+-N and NO3-N content in the root zone, and also increased the NO3 leaching loss below the root zone especially late in the growing season. Our results suggested that tree N status and yield and fruit quality could be maintained by multiple urea sprays during the growing season in apple orchards, and foliar N application will reduce the risk of soil NO3-N leaching.  相似文献   

18.
为了解丛枝菌根真菌(AMF)和不同形态氮对杉木(Cunninghamia lanceolata)生长和养分吸收的影响,以1 a生杉木幼苗接种摩西球囊霉(Glomus mosseae)和添加不同形态氮(NH4+-N和NO3-N),对其养分元素和生长状况的变化进行研究。结果表明,AMF显著提高了杉木的苗高和生物量,促进了杉木对N、P、K、Ca、Mg、Fe和Na的吸收,AMF对微量元素Fe、Na的促进作用总体上要强于大量元素K、Ca。与NO3-N相比,AMF显著提高了NH4+-N处理杉木的生物量、总C和N、Ca、Mg、Mn含量,而且这种显著性在叶中普遍高于根和茎。接种AMF可以促进杉木幼苗的生长和对养分元素的吸收,且添加NH4+-N处理的促进作用要强于NO3-N。  相似文献   

19.
In the tropics, cowpea is often intercropped with maize. Little is known about the effect of the intercropped maize on N2-fixation by cowpea or how intercropping affects nitrogen fertilizer use effiency or soil N-uptake of both crops. Cowpea and maize were grown as a monocrop at row spacings of 40, 50, 60, 80, and 120 cm and intercropped at row spacing of 40, 50, and 60 cm. Plots were fertilized with 50 kg N as (NH4)2SO4; microplots within each plot received the same amount of15N-depleted (NH4)2SO4. Using the15N-dilution method, the percentage of N derived from N2-fixation by cowpea and the recovery of N-fertilizer and soil N-uptake was measured for both crops at 50 and 80 days after planting.Significant differences in yield and total N for cowpea and maize at both harvest periods were dependent on row spacing and cropping systems. Maize grown at the closer row spacing accumulated most of its N during the first 50 days after planting, whereas maize grown at the widest row spacing accumulated a significant portion of its N during the last 30 days before the final harvest, 80 days after planting.Overall, no significant differences in the percentage of N derived from N2-fixation for monocropped or intercropped cowpea was observed and between 30 and 50% of its N was derived from N2.At 50 DAP, fertilizer and soil N uptake was dependent on row spacing with maize grown at the narrowest row spacing having a higher fertilizer and soil N recovery than maize grown at wider spacings. At 50 and 80 DAP, intercropped maize/cowpea did not have a higher fertilizer and soil N uptake than monocropped cowpea or maize at the same row spacing. Monocropped maize and cowpea at the same row spacing took up about the same amount of fertilizer or soil N. When intercropped, maize took up twice as much soil and fertilizer N as cowpea. Apparently intercropped cowpea was not able to maintain its yield potential.Whereas significant differences in total N for maize was observed at 50 and 80 DAP, no significant differences in the atom %14N excess were observed. Therefore, in this study, the atom %14N excess of the reference crop was yield independent. Furthermore, the similarity in the atom %14N excess for intercropped and monocropped maize indicated that transfer of N from the legume to the non-legume was small or not detectable.  相似文献   

20.
Zou  C.  Shen  J.  Zhang  F.  Guo  S.  Rengel  Z.  Tang  C. 《Plant and Soil》2001,235(2):143-149
Comparative studies on the effect of nitrogen (N) form on iron (Fe) uptake and distribution in maize (Zea mays L. cv Yellow 417) were carried out through three related experiments with different pretreatments. Experiment 1: plants were precultured in nutrient solution with 1.0×10–4 M FeEDTA for 6 d and then exposed to NO3–N or NH4–N solution with 1.0×10–4 M FeEDTA or without for 7 d. Experiment 2: plants were precultured with 59FeEDTA for 6 d and were then transferred to the solution with different N forms, and 0 and 1.0×10–4 M FeEDTA for 8 d. Experiment 3: half of roots were supplied with 59FeEDTA for 5 d and then cut off, with further culturing in treatment concentrations for 7 d. In comparison to the NH4-fed plants, young leaves of the NO3-fed plants showed severe chlorosis under Fe deficiency. Nitrate supply caused Fe accumulation in roots, while NH4–N supply resulted in a higher Fe concentration in young leaves and a lower Fe concentration in roots. HCl-extractable (active) Fe was a good indicator reflecting Fe nutrition status in maize plants. Compared with NO3-fed plants, a higher proportion of 59Fe was observed in young leaves of the Fe-deficient plants fed with NH4–N. Ammonium supply greatly improved 59Fe retranslocation from primary leaves and stem to young leaves. Under Fe deficiency, about 25% of Fe in primary leaves of the NH4-fed plants was mobilized and retranslocated to young leaves. Exogenous Fe supply decreased the efficiency of such 59Fe retranslocation. The results suggest that Fe can be remobilized from old to young tissues in maize plants but the remobilization depends on the form of N supply as well as supply of exogenous Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号