首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.  相似文献   

3.
We examined the effect of quercetin (3,3',4',5,7-pentahydroxyflavon) and KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat-induced heat shock protein (hsp) gene expression in Xenopus laevis A6 kidney epithelial cells. In previous studies, both quercetin and KNK437 inhibited heat shock factor activity resulting in a repression of hsp mRNA and protein accumulation in human cultured cells. In this first study of the effect of these hsp gene expression inhibitors in a non-mammalian cell line, we report that both quercetin and KNK437 reduced the heat shock-induced accumulation of hsp30, hsp47 and hsp70 mRNA in X. laevis cultured cells. However, these inhibitors had no effect on the relative level of a non-heat shock protein mRNA, ef1alpha, in either control or heat shocked cells. Western blot and immunocytochemical analyses revealed that quercetin partially inhibited HSP30 protein accumulation. In contrast, HSP30 protein was not detectable in KNK437-treated cells. Finally, treatment of A6 cells with KNK437 inhibited the heat shock-induced acquisition of thermotolerance, as determined by preservation of actin filaments and cellular morphology using immunocytochemistry and laser scanning confocal microscopy.  相似文献   

4.
In this study, we compared the effect of KNK437 (N-formyl-3, 4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat shock and chemical stressor-induced hsp30 gene expression in Xenopus laevis A6 kidney epithelial cells. Previously, KNK437 was shown to inhibit HSE-HSF1 binding activity and heat-induced hsp gene expression. In the present study, Northern and Western blot analysis revealed that pretreatment of A6 cells with KNK437 inhibited hsp30 mRNA and HSP30 and HSP70 protein accumulation induced by chemical stressors including sodium arsenite, cadmium chloride and herbimycin A. In A6 cells subjected to sodium arsenite, cadmium chloride, herbimycin A or a 33 degrees C heat shock treatment, immunocytochemistry and confocal microscopy revealed that HSP30 accumulated primarily in the cytoplasm. However, incubation of A6 cells at 35 degrees C resulted in enhanced HSP30 accumulation in the nucleus. Pre-treatment with 100 microM KNK437 completely inhibited HSP30 accumulation in A6 cells heat shocked at 33 or 35 degrees C as well as cells treated with 10 microM sodium arsenite, 100 microM cadmium chloride or 1 microg/mL herbimycin A. These results show that KNK437 is effective at inhibiting both heat shock- and chemical stress-induced hsp gene expression in amphibian cells.  相似文献   

5.
6.
7.
In the present study, withaferin A (WA), a steroidal lactone with anti-inflammatory and anti-tumor properties, inhibited proteasome activity and induced endoplasmic reticulum (ER) and cytoplasmic HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Proteasomal inhibition by WA was indicated by an accumulation of ubiquitinated protein and a decrease in chymotrypsin-like activity. Additionally, immunoblot analysis revealed that treatment of cells with WA induced the accumulation of HSPs including ER chaperones, BiP and GRP94, as well as cytoplasmic/nuclear HSPs, HSP70 and HSP30. Furthermore, WA-induced an increase in the relative levels of the protein kinase, Akt, while the levels of actin were unchanged compared to control. Northern blot experiments determined that WA induced an accumulation in bip, hsp70 and hsp30 mRNA but not eIF-1α mRNA. Interestingly, WA acted synergistically with mild heat shock to enhance HSP70 and HSP30 accumulation to a greater extent than the sum of both stressors individually. This latter phenomenon was not observed with BiP or GRP94. Immunocytochemical analysis indicated that WA-induced BiP accumulation occurred mainly in the perinuclear region in a punctate pattern, while HSP30 accumulation occurred primarily in a granular pattern in the cytoplasm with some staining in the nucleus. Prolonged exposure to WA resulted in disorganization of the F-actin cytoskeleton as well as the production of relatively large HSP30 staining structures that co-localized with F-actin. Finally, prior exposure of cells to WA treatment, which induced the accumulation of HSPs conferred a state of thermal protection since it protected the F-actin cytoskeleton against a subsequent cytotoxic thermal challenge.  相似文献   

8.
9.
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.  相似文献   

10.
11.
Aging, in the immune system, is characterized by a decreased ability to respond to exogenous insults, resulting in increased susceptibility to infections and blunted response to vaccination. While significant age-associated deficits in immune function have been documented, the underlying molecular mechanisms are still being investigated. A consistent decline in the proteolytic activity of the proteasome has been demonstrated with advancing age, implicating an important role for the proteasome in immune senescence, by studies that largely employed proteasome-enriched preparations from cell lysates. With the availability of novel cell permeable active site probes designed specifically for assaying proteasomal activity in live cells, we now confirm our earlier data demonstrating lower catalytic activity of the proteasome in primary human T cells obtained from the elderly when compared to those from young donors. Loss in proteasomal catalytic activity translated into a loss in functional activity, as was observed in a degradation assay employing an ubiquitinated protein substrate, Ub-IkappaBalpha. Unlike fluorogenic peptide substrates, use of ubiquitinated protein substrates not only confer greater stringency in terms of proteasomal hydrolysis, but also involve the participation of the 19S regulatory component. This age-associated loss in proteasomal activity is accompanied by alteration in the levels of catalytic, structural and regulatory subunits, with no change in that of the 11S activator or the inhibitor PAAF1. Oxidative modification, such as carbonylation and lipid-peroxidation, of proteasomal subunits was also detected in T cells from the elderly. Thus, oxidative modification and lower levels of proteasomal subunits contribute to decreased proteolytic activity during immune-senescence.  相似文献   

12.
13.
14.
15.
4-Hydroxy-2,3-trans-nonenal (HNE) is a neurotoxic unsaturated aldehyde end-product of lipid peroxidation. The addition of HNE to NT-2 and SK-N-MC cell lines induces apoptosis and we now investigated the time-course of events occurring prior to apoptosis. Treatment of both NT-2 and SK-N-MC cell lines with HNE led to HNE association with the proteasome, increased levels of protein carbonyls and ubiquitinated proteins, and decreased proteasomal function. There was also decreased metabolic activity, cytochrome c release and activation of caspase 3, followed by apoptotic changes including chromatin condensation, cell shrinkage and DNA fragmentation and laddering. Overexpression of mutant superoxide dismutase 1 proteins associated with amyotrophic lateral sclerosis decreased proteasomal activities in the absence of HNE and accelerated the apoptosis induced by HNE. By contrast, overexpression of wild-type superoxide dismutase 1 did not affect basal levels of proteasomal activity. The data suggest that accumulation of ubiquitinated proteins and impairment of proteasomal function are important events in HNE toxicity. We propose that the proteasomal system is a significant target of HNE neurotoxicity in a wide range of neurodegenerative diseases, especially if abnormal proteins are being expressed.  相似文献   

16.
The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.  相似文献   

17.
Many neurodegenerative disorders are characterized by two pathological hallmarks: progressive loss of neurons and occurrence of inclusion bodies containing ubiquitinated proteins. Inflammation may be critical to neurodegeneration associated with ubiquitin-protein aggregates. We previously showed that prostaglandin J2 (PGJ2), one of the endogenous products of inflammation, induces neuronal death and the accumulation of ubiquitinated proteins into distinct aggregates. We now report that temporal microarray analysis of human neuroblastoma SK-N-SH revealed that PGJ2 triggered a "repair" response including increased expression of heat shock, protein folding, stress response, detoxification and cysteine metabolism genes. PGJ2 also decreased expression of cell growth/maintenance genes and increased expression of apoptotic genes. Over time pro-death responses prevailed over pro-survival responses, leading to cellular demise. Furthermore, PGJ2 increased the expression of proteasome and other ubiquitin-proteasome pathway genes. This increase failed to overcome PGJ2 inhibition of 26 S proteasome activity. Ubiquitinated proteins are degraded by the 26 S proteasome, shown here to be the most active proteasomal form in SK-N-SH cells. We demonstrate that PGJ2 impairs 26 S proteasome assembly, which is an ATP-dependent process. PGJ2 perturbs mitochondrial function, which could be critical to the observed 26 S proteasome disassembly, suggesting a cross-talk between mitochondrial and proteasomal impairment. In conclusion neurotoxic products of inflammation, such as PGJ2, may play a role in neurodegenerative disorders associated with the aggregation of ubiquitinated proteins by impairing 26 S proteasome activity and inducing a chain of events that culminates in neuronal cell death. Temporal characterization of these events is relevant to understanding the underlying mechanisms and to identifying potential early biomarkers.  相似文献   

18.
Inhibition of proteasome activity and the resulting protein accumulation are now known to be important events in the development of many neurological disorders, including Alzheimer’s and Parkinson’s diseases. Abnormal or over expressed proteins cause endoplasmic reticulum and oxidative stress leading to cell death, thus, normal proteasome function is critical for their removal. We have shown previously, with cultured SH-SY5Y neuroblastoma cells, that proteasome inhibition by the drug epoxomicin results in accumulation of ubiquitinated proteins. This causes obligatory loading of the mitochondria with calcium (Ca2+), resulting in mitochondrial damage and cytochrome c release, followed by programmed cell death (PCD). In the present study, we demonstrate that all-trans-retinoic acid (RA) pretreatment of SH-SY5Y cells protects them from PCD death after subsequent epoxomicin treatment which causes proteasome inhibition. Even though ubiquitinated protein aggregates are present, there is no evidence to suggest that autophagy is involved. We conclude that protection by RA is likely by mechanisms that interfere with cell stress-PCD pathway that otherwise would result from protein accumulation after proteasome inhibition. In addition, although RA activates both the AKT and ERK phosphorylation signaling pathways, only pretreatment with LY294002, an inhibitor of PI3-kinase in the AKT pathway, removed the protective effect of RA from the cells. This finding implies that RA activation of the AKT signaling cascade takes precedence over its activation of ERK1/2 phosphorylation, and that this selective effect of RA is key to its protection of epoxomicin-treated cells. Taken together, these findings suggest that RA treatment of cultured neuroblastoma cells sets up conditions under which proteasome inhibition, and the resultant accumulation of ubiquitinated proteins, loses its ability to kill the cells and may likely play a therapeutic role in neurodegenerative diseases.  相似文献   

19.
The ubiquitin–proteasome system (UPS) is indispensable to the protein quality control in eukaryotic cells. Due to the remarkable clinical success of using proteasome inhibitors for clinical treatment of multiple myeloma, it is anticipated that targeting the UPS upstream of the proteasome step be an effective strategy for cancer therapy. Deubiquitinases (DUB) are proteases that remove ubiquitin from target proteins and therefore regulate multiple cellular processes including some signaling pathways altered in cancer cells. Thus, targeting DUB is a promising strategy for cancer drug discovery. Previously, we have reported that metal complexes, such as copper and gold complexes, can disrupt the UPS via suppressing the activity of 19S proteasome-associated DUBs and/or of the 20S proteasomes, thereby inducing cancer cell death. In this study, we found that cadmium pyrithione (CdPT) treatment led to remarkable accumulation of ubiquitinated proteins in cultured cancer cells and primary leukemia cells. CdPT potently inhibited the activity of proteasomal DUBs (USP14 and UCHL5), but slightly inhibited 20S proteasome activity. The anti-cancer activity of CdPT was associated with triggering apoptosis via caspase activation. Moreover, treatment with CdPT inhibited proteasome function and repressed tumor growth in animal xenograft models. Our results show that cadmium-containing complex CdPT may function as a novel proteasomal DUB inhibitor and suggest appealing prospects for cancer treatment.  相似文献   

20.
The 26S proteasome degrades ubiquitinated proteins, and proteasomal degradation controls various cellular events. Here we report that the human 26S proteasome is ubiquitinated, by which the ubiquitin receptors Adrm1 and S5a, the ATPase subunit Rpt5, and the deubiquitinating enzyme Uch37 are ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of these subunits significantly impairs the 26S proteasome''s ability to bind, deubiquitinate, and degrade ubiquitinated proteins. Moreover, ubiquitination of the 26S proteasome can be antagonized by proteasome-residing deubiquitinating enzymes, by the binding of polyubiquitin chains, and by certain cellular stress, indicating that proteasome ubiquitination is dynamic and regulated in cells. We propose that in situ ubiquitination of the 26S proteasome regulates its activity, which could function to adjust proteasomal activity in response to the alteration of cellular ubiquitination levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号