共查询到20条相似文献,搜索用时 15 毫秒
1.
The breeder's equation, which predicts evolutionary change when a phenotypic covariance exists between a heritable trait and fitness, has provided a key conceptual framework for studies of adaptive microevolution in nature. However, its application requires strong assumptions to be made about the causation of fitness variation. In its univariate form, the breeder's equation assumes that the trait of interest is not correlated with other traits having causal effects on fitness. In its multivariate form, the validity of predicted change rests on the assumption that all such correlated traits have been measured and incorporated into the analysis. Here, we (i) highlight why these assumptions are likely to be seriously violated in studies of natural, rather than artificial, selection and (ii) advocate wider use of the Robertson–Price identity as a more robust, and less assumption‐laden, alternative to the breeder's equation for applications in evolutionary ecology. 相似文献
2.
Genetic selection for improved disease resistance is an important part of strategies to combat infectious diseases in agriculture. Quantitative genetic analyses of binary disease status, however, indicate low heritability for most diseases, which restricts the rate of genetic reduction in disease prevalence. Moreover, the common liability threshold model suggests that eradication of an infectious disease via genetic selection is impossible because the observed-scale heritability goes to zero when the prevalence approaches zero. From infectious disease epidemiology, however, we know that eradication of infectious diseases is possible, both in theory and practice, because of positive feedback mechanisms leading to the phenomenon known as herd immunity. The common quantitative genetic models, however, ignore these feedback mechanisms. Here, we integrate quantitative genetic analysis of binary disease status with epidemiological models of transmission, aiming to identify the potential response to selection for reducing the prevalence of endemic infectious diseases. The results show that typical heritability values of binary disease status correspond to a very substantial genetic variation in disease susceptibility among individuals. Moreover, our results show that eradication of infectious diseases by genetic selection is possible in principle. These findings strongly disagree with predictions based on common quantitative genetic models, which ignore the positive feedback effects that occur when reducing the transmission of infectious diseases. Those feedback effects are a specific kind of Indirect Genetic Effects; they contribute substantially to the response to selection and the development of herd immunity (i.e., an effective reproduction ratio less than one). 相似文献
3.
Hereford J Hansen TF Houle D 《Evolution; international journal of organic evolution》2004,58(10):2133-2143
The fundamental equation in evolutionary quantitative genetics, the Lande equation, describes the response to directional selection as a product of the additive genetic variance and the selection gradient of trait value on relative fitness. Comparisons of both genetic variances and selection gradients across traits or populations require standardization, as both are scale dependent. The Lande equation can be standardized in two ways. Standardizing by the variance of the selected trait yields the response in units of standard deviation as the product of the heritability and the variance-standardized selection gradient. This standardization conflates selection and variation because the phenotypic variance is a function of the genetic variance. Alternatively, one can standardize the Lande equation using the trait mean, yielding the proportional response to selection as the product of the squared coefficient of additive genetic variance and the mean-standardized selection gradient. Mean-standardized selection gradients are particularly useful for summarizing the strength of selection because the mean-standardized gradient for fitness itself is one, a convenient benchmark for strong selection. We review published estimates of directional selection in natural populations using mean-standardized selection gradients. Only 38 published studies provided all the necessary information for calculation of mean-standardized gradients. The median absolute value of multivariate mean-standardized gradients shows that selection is on average 54% as strong as selection on fitness. Correcting for the upward bias introduced by taking absolute values lowers the median to 31%, still very strong selection. Such large estimates clearly cannot be representative of selection on all traits. Some possible sources of overestimation of the strength of selection include confounding environmental and genotypic effects on fitness, the use of fitness components as proxies for fitness, and biases in publication or choice of traits to study. 相似文献
4.
A centennial celebration for quantitative genetics 总被引:3,自引:0,他引:3
Roff DA 《Evolution; international journal of organic evolution》2007,61(5):1017-1032
5.
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals’ network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group‐level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. 相似文献
6.
Ilana Weigensberg Derek A. Roff 《Evolution; international journal of organic evolution》1996,50(6):2149-2157
The validity of the assumption, that laboratory estimates of heritabilities will tend to overestimate natural heritabilities, due to a reduction in environmental variability and thus the phenotypic variance of traits, is examined. One hundred sixty-five field estimates of narrow sense heritabilities derived from the literature are compared with 189 estimates from laboratory studies on wild, outbred animal populations derived from the data set of Mousseau and Roff. The results indicate that 84% of field heritabilities are significantly different from zero and that for morphological, behavioral, and life-history traits there are no significant differences between laboratory and field estimates of heritability. Unexpectedly, mean heritabilities for morphological and life-history traits are actually higher in the field than in the lab. Twenty-two cases were found for which both laboratory and natural heritabilities had been estimated on the same traits. For this subset of the data, laboratory heritabilities tended to be higher than field estimates, but the difference was not significant. Also, the correlation between lab and field estimates was high (r = 0.6, P < 0.001), and the regression slope did not differ significantly from one. The major implications of this study are that laboratory estimates of heritability should generally provide reasonable estimations of both the magnitude and the significance of heritabilities in nature. 相似文献
7.
Anna Riba Peschel Emma Lauren Boehm Ruth Geyer Shaw 《Evolution; international journal of organic evolution》2021,75(1):73-85
Adaptation through natural selection may be the only means by which small and fragmented plant populations will persist through present day environmental change. A population's additive genetic variance for fitness (VA(W)) represents its immediate capacity to adapt to the environment in which it exists. We evaluated this property for a population of the annual legume Chamaecrista fasciculata through a quantitative genetic experiment in the tallgrass prairie region of the Midwestern United States, where changing climate is predicted to include more variability in rainfall. To reduce incident rainfall, relative to controls receiving ambient rain, we deployed rain exclusion shelters. We found significant VA(W) in both treatments. We also detected a significant genotype‐by‐treatment interaction for fitness, which suggests that the genetic basis of the response to natural selection will differ depending on precipitation. For the trait‐specific leaf area, we detected maladaptive phenotypic plasticity and an interaction between genotype and environment. Selection for thicker leaves was detected with increased precipitation. These results indicate capacity of this population of C. fasciculata to adapt in situ to environmental change. 相似文献
8.
F Garcia-Gonzalez LW Simmons JL Tomkins JS Kotiaho JP Evans 《Evolution; international journal of organic evolution》2012,66(8):2341-2349
In 1992, David Houle showed that measures of additive genetic variation standardized by the trait mean, CV(A) (the coefficient of additive genetic variation) and its square (I(A) ), are suitable measures of evolvability. CV(A) has been used widely to compare patterns of genetic variation. However, the use of CV(A) s for comparative purposes relies critically on the correct calculation of this parameter. We reviewed a sample of quantitative genetic studies, focusing on sire models, and found that 45% of studies use incorrect methods for calculating CV(A) and that practices that render these coefficients meaningless are frequent. This may have important consequences for conclusions drawn from comparative studies. Our results are suggestive of a broader problem because miscalculation of the additive genetic variance from a sire model is prevalent among the studies sampled, implying that other important quantitative genetic parameters might also often be estimated incorrectly. We discuss the most prominent issues affecting the use of CV(A) and I(A) , including scale effects, data transformation, and the comparison of traits with different dimensions. Our aim is to increase awareness of the potential mistakes surrounding the calculation and use of evolvabilities, and to compile general guidelines for calculating, reporting, and interpreting these useful measures in future studies. 相似文献
9.
Hadfield JD 《Proceedings. Biological sciences / The Royal Society》2008,275(1635):723-734
Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives. 相似文献
10.
Numerous living systems are hierarchically organized, whereby replicating components are grouped into reproducing collectives—e.g., organelles are grouped into cells, and cells are grouped into multicellular organisms. In such systems, evolution can operate at two levels: evolution among collectives, which tends to promote selfless cooperation among components within collectives (called altruism), and evolution within collectives, which tends to promote cheating among components within collectives. The balance between within- and among-collective evolution thus exerts profound impacts on the fitness of these systems. Here, we investigate how this balance depends on the size of a collective (denoted by N) and the mutation rate of components (m) through mathematical analyses and computer simulations of multiple population genetics models. We first confirm a previous result that increasing N or m accelerates within-collective evolution relative to among-collective evolution, thus promoting the evolution of cheating. Moreover, we show that when within- and among-collective evolution exactly balance each other out, the following scaling relation generally holds: is a constant, where scaling exponent α depends on multiple parameters, such as the strength of selection and whether altruism is a binary or quantitative trait. This relation indicates that although N and m have quantitatively distinct impacts on the balance between within- and among-collective evolution, their impacts become identical if m is scaled with a proper exponent. Our results thus provide a novel insight into conditions under which cheating or altruism evolves in hierarchically organized replicating systems. 相似文献
11.
Eva L. Koch Sonja H. Sbilordo Frédéric Guillaume 《Evolution; international journal of organic evolution》2020,74(12):2725-2740
The additive genetic variation (VA) of fitness in a population is of particular importance to quantify its adaptive potential and predict its response to rapid environmental change. Recent statistical advances in quantitative genetics and the use of new molecular tools have fostered great interest in estimating fitness VA in wild populations. However, the value of VA for fitness in predicting evolutionary changes over several generations remains mostly unknown. In our study, we addressed this question by combining classical quantitative genetics with experimental evolution in the model organism Tribolium castaneum (red flour beetle) in three new environmental conditions (Dry, Hot, Hot-Dry). We tested for potential constraints that might limit adaptation, including environmental and sex genetic antagonisms captured by negative genetic covariance between environments and female and male fitness, respectively. Observed fitness changes after 20 generations mainly matched our predictions. Given that body size is commonly used as a proxy for fitness, we also tested how this trait and its genetic variance (including nonadditive genetic variance) were impacted by environmental stress. In both traits, genetic variances were sex and condition dependent, but they differed in their variance composition, cross-sex and cross-environment genetic covariances, as well as in the environmental impact on VA. 相似文献
12.
Klingenberg CP 《Evolution; international journal of organic evolution》2003,57(1):191-195
13.
Juan Núez-Farfn Rodolfo Dirzo 《Evolution; international journal of organic evolution》1994,48(2):423-436
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution. 相似文献
14.
Alastair J. Wilson Denis Réale Michelle N. Clements Michael M. Morrissey Erik Postma Craig A. Walling Loeske E. B. Kruuk Daniel H. Nussey 《The Journal of animal ecology》2010,79(1):13-26
1. Efforts to understand the links between evolutionary and ecological dynamics hinge on our ability to measure and understand how genes influence phenotypes, fitness and population dynamics. Quantitative genetics provides a range of theoretical and empirical tools with which to achieve this when the relatedness between individuals within a population is known.
2. A number of recent studies have used a type of mixed-effects model, known as the animal model, to estimate the genetic component of phenotypic variation using data collected in the field. Here, we provide a practical guide for ecologists interested in exploring the potential to apply this quantitative genetic method in their research.
3. We begin by outlining, in simple terms, key concepts in quantitative genetics and how an animal model estimates relevant quantitative genetic parameters, such as heritabilities or genetic correlations.
4. We then provide three detailed example tutorials, for implementation in a variety of software packages, for some basic applications of the animal model. We discuss several important statistical issues relating to best practice when fitting different kinds of mixed models.
5. We conclude by briefly summarizing more complex applications of the animal model, and by highlighting key pitfalls and dangers for the researcher wanting to begin using quantitative genetic tools to address ecological and evolutionary questions. 相似文献
2. A number of recent studies have used a type of mixed-effects model, known as the animal model, to estimate the genetic component of phenotypic variation using data collected in the field. Here, we provide a practical guide for ecologists interested in exploring the potential to apply this quantitative genetic method in their research.
3. We begin by outlining, in simple terms, key concepts in quantitative genetics and how an animal model estimates relevant quantitative genetic parameters, such as heritabilities or genetic correlations.
4. We then provide three detailed example tutorials, for implementation in a variety of software packages, for some basic applications of the animal model. We discuss several important statistical issues relating to best practice when fitting different kinds of mixed models.
5. We conclude by briefly summarizing more complex applications of the animal model, and by highlighting key pitfalls and dangers for the researcher wanting to begin using quantitative genetic tools to address ecological and evolutionary questions. 相似文献
15.
Hoffman EA Mobley KB Jones AG 《Evolution; international journal of organic evolution》2006,60(2):404-410
The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa. 相似文献
16.
Environmental conditions experienced by a female prior to reproducing may be influenced by her mate. Part of such an indirect effect of a male on his partner's reproduction may be genetic (indirect genetic effect). However, a female's direct and a male's indirect genetic effects need not align. We analyzed 10,652 records of seasonal timing of laying, an important reproductive trait in many organisms, of 1864 male and 1916 female common gulls Larus canus collected during 37 years. We show that there is both a direct (female) and an indirect (male) genetic effect (explaining 14.5% and 4.8% of the REML estimated variance in laying date, respectively), but these are significantly negatively correlated (-0.53+/-0.22 SE), indicating that genes for early laying in females are associated with genes for a delaying male effect on his partner's laying date (and vice versa). There is strong selection for laying early in this population, and these sexually antagonistic genetic effects may contribute in maintaining the variation in laying date. Our findings provide an empirical demonstration of a hitherto largely unstudied level of conflict between mates, with important ramifications for our understanding of evolutionary dynamics and mate choice in nature. 相似文献
17.
目前,生态学家越来越关注深入的生物学问题,例如,1)理解生态和进化过程的互作和关系;2)种群中一个重要的表型特征,受遗传基因影响多大?即其可遗传程度,表示该性状的进化潜能;3)基因是怎样影响表型性状,及其对应的个体适合度以及种群动态?4)决定多个重要表型性状的基因之间关系和互作如何?随着生物统计软件尤其是线性混合模型的发展,结合经典数量遗传学的理论,发展出了针对上述问题的动物模型(Animal Model),使得我们可以对野外种群进行上述研究。本文首先介绍了经典数量遗传学的重要概念,随后在其理论框架下,举例介绍了动物模型的操作和使用,最后探讨和展望了利用数量遗传学方法进行进化生态学研究的前景。 相似文献
18.
Alan H. Cheetham Jeremy B. C. Jackson Lee-Ann C. Hayek 《Evolution; international journal of organic evolution》1994,48(2):360-375
The roles of natural selection and random genetic change in the punctuated phenotypic evolution of eight Miocene-Pliocene tropical American species of the cheilostome bryozoan Metrarabdotos are analyzed by quantitative genetic methods. Trait heritabilities and genetic covariances reconstructed by partitioning within- and among-colony phenotypic variance are similar to those previously obtained for living species of the cheilostome Stylopoma using breeding data. The hypothesis that differences in skeletal morphology between species of Metrarabdotos are entirely due to mutation and genetic drift cannot be rejected for reasonable rates of mutation maintained for periods brief enough to account for the geologically abrupt appearances of these species in the fossil record. Except for one pair of species, separated by the largest morphologic distance, directional selection acting alone would require unrealistically high rates of selective mortality to be maintained for these periods. Thus, directional selection is not strongly implicated in the divergence of Metrarabdotos species. Within species, rates of net phenotypic change are slow enough to require stabilizing selection, but mask large, relatively rapid fluctuations, all of which, however, can be attributed to chance departures from the mean phenotype by mutation and genetic drift, rather than to tracking environmental fluctuation by directional selection. The results are consistent with genetic models involving shifts between multiple adaptive peaks on which phenotypes remain more or less static through long-term stabilizing selection. Regardless of the degree to which directional selection may be involved in peak shifts, phenotypic differentiation is thus related to processes different than the pervasive stabilizing selection acting within species. 相似文献
19.
William G. Hill 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1537):73-85
Quantitative genetics, or the genetics of complex traits, is the study of those characters which are not affected by the action of just a few major genes. Its basis is in statistical models and methodology, albeit based on many strong assumptions. While these are formally unrealistic, methods work. Analyses using dense molecular markers are greatly increasing information about the architecture of these traits, but while some genes of large effect are found, even many dozens of genes do not explain all the variation. Hence, new methods of prediction of merit in breeding programmes are again based on essentially numerical methods, but incorporating genomic information. Long-term selection responses are revealed in laboratory selection experiments, and prospects for continued genetic improvement are high. There is extensive genetic variation in natural populations, but better estimates of covariances among multiple traits and their relation to fitness are needed. Methods based on summary statistics and predictions rather than at the individual gene level seem likely to prevail for some time yet. 相似文献
20.
Darren C. Hunter Josephine M. Pemberton Jill G. Pilkington Michael B. Morrissey 《Evolution; international journal of organic evolution》2018,72(4):851-866
In nature, selection varies across time in most environments, but we lack an understanding of how specific ecological changes drive this variation. Ecological factors can alter phenotypic selection coefficients through changes in trait distributions or individual mean fitness, even when the trait‐absolute fitness relationship remains constant. We apply and extend a regression‐based approach in a population of Soay sheep (Ovis aries) and suggest metrics of environment‐selection relationships that can be compared across studies. We then introduce a novel method that constructs an environmentally structured fitness function. This allows calculation of full (as in existing approaches) and partial (acting separately through the absolute fitness function slope, mean fitness, and phenotype distribution) sensitivities of selection to an ecological variable. Both approaches show positive overall effects of density on viability selection of lamb mass. However, the second approach demonstrates that this relationship is largely driven by effects of density on mean fitness, rather than on the trait‐fitness relationship slope. If such mechanisms of environmental dependence of selection are common, this could have important implications regarding the frequency of fluctuating selection, and how previous selection inferences relate to longer term evolutionary dynamics. 相似文献