首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The advent of long PCR (XL-PCR) has proven to be a major advance in PCR technology and is currently being utilised to investigate numerous biological systems. The analysis of mixed DNA populations is a particularly useful application for XL-PCR. For example, XL-PCR has been used to investigate the occurrence of heterogeneous mitochondrial DNA (mtDNA) rearrangement mutations. With XL-PCR it became possible to amplify the entire length of the mtDNA chromosome and detect any mtDNA deletion or insertion mutations based on a measurable change in overall sequence length. In the present communication, XL-PCR and conventional short-length PCR were used to amplify mitochondrial DNA sequences from several human vastus lateralis skeletal muscle samples. The experiments demonstrated that there was minimal preferential amplification of shorter DNA sequences with XL-PCR and was significantly less than the preferential amplification of shorter sequences observed with conventional PCR. Also, XL-PCR amplification of the complete mtDNA sequence from control DNA containing a single mtDNA template (leucocyte extracts) showed that the generation of PCR artefacts was not a predisposed failing of the system but was dependant on the standard rules that govern the set up and optimisation of any PCR reaction. In optimised systems, XL-PCR artefacts were not generated and a single PCR product was always recovered.  相似文献   

2.
The incorporation of fragments of mitochondrial DNA (mtDNA) in the nuclear genome, known as numts (nuclear mitochondrial pseudogenes), undermines general assumptions concerning the use of mtDNA in phylogenetic and phylogeographic studies. Accidental amplifications of these nuclear copies instead of the mitochondrial target can lead to crucial misinterpretations, thus the correct identification of numts and their differentiation from true mitochondrial sequences are important in preventing this kind of error. Our goal was to describe the existence of cytochrome b (cytb) numts in the leafcutter ant Acromyrmex striatus (Roger, 1863). PCR products were directly sequenced using a pair of universal primers designed to amplify the cytb gene of these insects. Other species of leafcutter ants were also sequenced. The sequences were analyzed and the numts were identified by the presence of double peaks, indels and premature stop codons. Only A. striatus clearly showed the presence of numts, while the other species displayed the expected amplification of the mtDNA cytb gene target using the same primer pair. We hope that our report will highlight the benefits and challenges of using mtDNA in the molecular phylogenetic reconstruction and phylogeographic studies of ants, while establishing the importance of numts reports for future studies.  相似文献   

3.
Summary We attempted to amplify a specific region of mitochondrial DNA (mtDNA) using the polymerase chain reaction (PCR) from fewer than ten mitochondria isolated individually by microdissection or use of an optical tweezer. We selected preliminarily isolated mitochondria fromPhysarum polycephalum as the model materials and tried to amplify the mtDNA region corresponding to the specific mitochondrial plasmid of this true slime mould. For separation of a few mitochondria from the mitochondrial population, we initially used a destruction method in which excluded mitochondria were disrupted by a UV laser. However, mtDNA was still amplified, although weakly, from mitochondria that had been destroyed by the UV laser. Therefore, we used an optical tweezer to trap individual mitochondria and separate them from the others. The required number of mitochondria were separated from the mitochondrial suspension through a narrow canal of isolation buffer and used directly for PCR amplification. The results showed that the mtDNA could be amplified from at least 9 mitochondria trapped by the optical tweezer.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EDTA ethylenediaminetetraacetic acid - mtDNA mitochondrial DNA - PCR polymerase chain reaction  相似文献   

4.
Mitochondrial DNA (mtDNA) mutations increase with age. However, the number of cells with predominantly mutated mtDNA is small in old animals. Here a new hypothesis is proposed: mtDNA fragments may insert into nuclear DNA contributing to aging and related diseases by alterations in the nucleus. Real-time PCR quantification shows that sequences of cytochrome oxidase III and 16S rRNA from mtDNA are present in highly purified nuclei from liver and brain in young and old rats. The sequences of these insertions revealed that they contain single nucleotide polymorphisms identical to those present in mtDNA of the same animal. Interestingly, the amount of mitochondrial sequences in nuclear DNA increases with age in both tissues. In situ hybridization of mtDNA to nuclear DNA confirms the presence of mtDNA sequences inside nuclear DNA in rat hepatocytes. Bone marrow metaphase cells from both young and old rats show mtDNA at centromeric regions in 20 out of the 2n = 40 chromosomes. Consequently, mitochondria can be a major trigger of aging but the final target could also be the nucleus.  相似文献   

5.
Polymerase chain reactions (PCR) are used to generate specific DNA sequences from minute amounts of DNA templates using a pair of oligonucleotide primers. To amplify regions of unknown sequence, methods such as inverted PCR, Alu PCR, and rapid amplification of cDNA ends (RACE) have been developed. These methods require several enzymatic manipulations of DNA which are either tedious or only suitable for certain special conditions. We have explored the possibility of PCR using a single primer. This method takes advantage of the fact that partial complementarity provides sufficient affinity for the oligonucleotide primer to anneal to a secondary, imperfect binding site. Thus, no modification of DNA template was required for the single primer-mediated PCR. We have used this method to generate two different aFGF cDNA clones containing different 5'-untranslated sequences.  相似文献   

6.
Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear) DNA. Reduction in nuclear DNA (nDNA) content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts). We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA) by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS) analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA) content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.  相似文献   

7.
Lee HY  Kim NY  Park MJ  Yang WI  Shin KJ 《BioTechniques》2008,44(4):555-6, 558
To facilitate the analysis of mitochondrial DNA (mtDNA) control region sequences from highly degraded skeletal remains, a modified mini-primer set was designed to overcome the limitations of the Armed Forces DNA Identification Laboratory (AFDIL) mini-primer set. This modified mini-primer set is less affected by nucleotide variability and PCR amplification conditions than the AFDIL mini-primer set, and was able to amplify the mtDNA sequences of 55-year-old skeletal remains with high efficiency, indicating that it is a useful tool for analyzing mtDNA control region sequences from highly degraded forensic samples.  相似文献   

8.
9.
Numts are nonfunctional mitochondrial sequences that have translocated into nuclear DNA, where they evolve independently from the original mitochondrial DNA (mtDNA) sequence. Numts can be unintentionally amplified in addition to authentic mtDNA, complicating both the analysis and interpretation of mtDNA-based studies. Amplification of numts creates particular issues for studies on the noncoding, hypervariable 1 mtDNA region of gorillas. We provide data on putative numt sequences of the coding mitochondrial gene cytochrome oxidase subunit II (COII). Via polymerase chain reaction (PCR) and cloning, we obtained COII sequences for gorilla, orangutan, and human high-quality DNA and also from a gorilla fecal DNA sample. Both gorilla and orangutan samples yielded putative numt sequences. Phylogenetically more anciently transferred numts were amplified with a greater incidence from the gorilla fecal DNA sample than from the high-quality gorilla sample. Data on phylogenetically more recently transferred numts are equivocal. We further demonstrate the need for additional investigations into the use of mtDNA markers for noninvasively collected samples from gorillas and other primates.  相似文献   

10.
The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts) as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2) and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.  相似文献   

11.
Screening of drug-induced mitochondrial DNA (mtDNA) depletion during early preclinical drug development is of major interest. Here we describe the establishment of a novel duplex calibrator-normalized real-time polymerase chain reaction (PCR) assay for rapid and reliable quantification of mtDNA in HepG2 cells. This assay involves quantification of an mtDNA target gene (cytochrome b) relative to a nuclear DNA (nDNA) reference gene (β-actin) in one tube. The assay was evaluated for its precision, linearity, and reproducibility, and reliable detection of mtDNA depletion was demonstrated. Using this novel real-time PCR assay, drug-induced mtDNA depletion could be accurately detected.  相似文献   

12.
We have developed an argon laser chromosome microdissection technique in conjunction with a polymerase chain reaction (PCR) approach to directly amplify microdissected chromosomes. The single 22-mer primer used in PCR, although unique in sequence (5'-TAGATCTGA-TATCTGAATTCCC-3'), randomly primed and amplified any target DNA. These methods were applied to the distal half of the short arm of human chromosome 4 containing the Huntington disease (HD) locus. Forty-four percent of representative clones from this library identify single-copy DNA sequences. This calculation suggests that the resulting chromosome-specific DNA library contains approximately 600 nonoverlapping sequences with an average size 350 bp at an average spacing of 30 kbp along chromosome 4. This microdissection and PCR cloning procedure is a simple and general approach for constructing a chromosome region-specific DNA library from a single metaphase spread.  相似文献   

13.
Deletions in mitochondrial DNA (mtDNA) accumulate with age in humans without overt mitochondriopathies, but relatively limited attention has been devoted to the measurement of the total number of mtDNA molecules per cell during ageing. We have developed a precise assay that determines mtDNA levels relative to nuclear DNA using a PCR-based procedure. Quantification was performed by reference to a single recombinant plasmid standard containing a copy of each target DNA sequence (mitochondrial and nuclear). Copy number of mtDNA was determined by amplifying a short region of the cytochrome b gene (although other regions of mtDNA were demonstrably useful). Nuclear DNA content was determined by amplification of a segment of the single copy β-globin gene. The copy number of mtDNA per diploid nuclear genome in myocardium was 6970 ± 920, significantly higher than that in skeletal muscle, 3650 ± 620 (P = 0.006). In both human skeletal muscle and myocardium, there was no significant change in mtDNA copy number with age (from neonates to subjects older than 80 years). This PCR-based assay not only enables accurate determination of mtDNA relative to nuclear DNA but also has the potential to quantify accurately any DNA sequence in relation to any other.  相似文献   

14.
The polymerase chain reaction (PCR) was used selectively to amplify specific rDNA sequences of Carnobacterium divergens, C. mobile, C. piscicola and C. gallinarum in purified DNA extracts, crude cell lysates and food samples. The PCR products were visualized by agarose gel electrophoresis and identified, at species level, by hybridization reactions with three specific oligonucleotide probes for C. divergens, C. mobile and C. piscicola/C. gallinarum designed from 16S rRNA sequence data. The PCR was sufficiently sensitive to amplify DNA from a single bacterium to detectable levels after 30 cycles of amplification. Both radioactive (32P) and non-radioactive alkaline phosphatase labelled probes was able to detect the PCR products. Detection was highly specific and the probes did not hybridize with DNA samples from any other of the bacterial species tested. These methods enabled the rapid and specific detection and identification of carnobacteria from pure cultures and samples of meat.  相似文献   

15.
Transmitochondrial cytoplasmic hybrids (cybrids) enable functional assessment of mitochondrial DNA (mtDNA)-encoded proteins. Cybrid production often utilizes cell lines depleted of endogenous mtDNA (rho0 cells), and a number of suitable rho0 cell lines exist for this purpose. We now provide molecular data characterizing an NT2 human teratocarcinoma rho0 cell line, as well as NT2 cybrid derivatives. NT2 rho0 cells contained no detectable mtDNA on a sensitive PCR assay. Eight weeks after exogenous mtDNA transfer cybrids showed no evidence of endogenous mtDNA reversion, and heteroplasmic ratios of a single nucleotide substitution roughly reflected that of the blood samples used to repopulate their mtDNA.  相似文献   

16.
Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations.  相似文献   

17.
DNA analysis from carrion flies (iDNA analysis) has recently been promoted as a powerful tool for cost‐ and time‐efficient monitoring of wildlife. While originally applied to identify any mammalian species present in an area, it should also allow for targeted detection of species and individuals. Using carrion flies captured in the Taï National Park, Côte d'Ivoire, we assessed this possibility by (i) screening carrion fly DNA extracts with nonspecific and species‐specific PCR systems, respectively, targeting mitochondrial DNA (mtDNA) fragments of any mammal or of Jentink's duiker (Cephalophus jentinki), three colobine monkeys (subfamily Colobinae) and sooty mangabey (Cercocebus atys); and (ii) genotyping carrion fly extracts containing sooty mangabey mtDNA. In comparison with the nonspecific PCR assay, the use of specific PCRs increased the frequency of detection of target species up to threefold. Detection rates partially reflected relative abundances of target species in the area. Amplification of seven microsatellite loci from carrion flies positive for sooty mangabey mtDNA yielded an average PCR success of 46%, showing that the identification of individuals is, to some extent, possible. Regression analysis of microsatellite PCR success and mtDNA concentration revealed that, among all carrion flies analysed for this study, 1% contained amounts of mammal mtDNA sufficient to attempt genotyping with potentially high success. We conclude that carrion fly‐derived DNA analysis represents a promising tool for targeted monitoring of mammals in their natural habitat.  相似文献   

18.

Background

Mitochondrial DNA (mtDNA) is widely used in population genetic and phylogenetic studies in animals. However, such studies can generate misleading results if the species concerned contain nuclear copies of mtDNA (Numts) as these may amplify in addition to, or even instead of, the authentic target mtDNA. The aim of this study was to determine if Numts are present in Aedes aegypti mosquitoes, to characterise any Numts detected, and to assess the utility of using mtDNA for population genetics studies in this species.

Results

BLAST searches revealed large numbers of Numts in the Ae. aegypti nuclear genome on 146 supercontigs. Although the majority are short (80% < 300 bp), some Numts are almost full length mtDNA copies. These long Numts are not due to misassembly of the nuclear genome sequence as the Numt-nuclear genome junctions could be recovered by amplification and sequencing. Numt evolution appears to be a complex process in Ae. aegypti with ongoing genomic integration, fragmentation and mutation and the secondary movement of Numts within the nuclear genome. The PCR amplification of the putative mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4) gene from 166 Southeast Asian Ae. aegypti mosquitoes generated a network with two highly divergent lineages (clade 1 and clade 2). Approximately 15% of the ND4 sequences were a composite of those from each clade indicating Numt amplification in addition to, or instead of, mtDNA. Clade 1 was shown to be composed at least partially of Numts by the removal of clade 1-specific bases from composite sequences following enrichment of the mtDNA. It is possible that all the clade 1 sequences in the network were Numts since the clade 2 sequences correspond to the known mitochondrial genome sequence and since all the individuals that produced clade 1 sequences were also found to contain clade 2 mtDNA-like sequences using clade 2-specific primers. However, either or both sets of clade sequences could have Numts since the BLAST searches revealed two long Numts that match clade 2 and one long Numt that matches clade 1. The substantial numbers of mutations in cloned ND4 PCR products also suggest there are both recently-derived clade 1 and clade 2 Numt sequences.

Conclusion

We conclude that Numts are prevalent in Ae. aegypti and that it is difficult to distinguish mtDNA sequences due to the presence of recently formed Numts. Given this, future population genetic or phylogenetic studies in Ae. aegypti should use nuclear, rather than mtDNA, markers.  相似文献   

19.
The complete mitochondrial genome of a chloramphenicol-resistant, oligomycin-resistant mouse L cell has been cloned in E. coli. Using fragments of this DNA, purified by preparative agarose gel electrophoresis, we have mapped 139 restriction sites cleaved by 15 endonucleases. We have then compared the positions of these sites with those found in mtDNA purified from several other L-cell lines, from the tissue of several strains of laboratory mice, and from a plasmid containing mtDNA of a single, wild Mus musculus sample. The results indicate that all of the L-cell mtDNAs are identical except at a single EcoRI site, and that the L-cell sequence is identical to that found in mtDNA from normal tissue. They also suggest that mtDNA sequences found in North American Mus musculus populations may be much more homogeneous than expected from analysis of other rodents.  相似文献   

20.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号