首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were infused for 3.5 to 10 hrs with either red cells or plasma previously labelled in vivo by [3H]-cholesterol. Cholesterol specific radioactivities were measured in plasma, HDL, LDL and VLDL, and various tissues. Red cell infusions led to a higher labelling of free than of esterified cholesterol in the plasma of infused rats. The opposite situation was observed following plasma infusion. Comparison of free and esterified cholesterol specific radioactivities in each tissue showed that esterified cholesterol was transferred from plasma to all the tissues, except the adrenals. Study of the ratios of cholesterol specific radioactivities from one experimental group to the other in each tissue, made it possible to demonstrate clearly the occurence of hydrolysis within all the studied tissues except 5 of them where its existence remains uncertain (lung, heart, kidney, tendon, muscle) and of esterification in 3 tissues (adrenal, liver lung). In addition, ratios of cholesterol radioactivities (free/ester) were found to be identical in plasma and in 4 tissues, where neither hydrolysis nor esterification were detected (heart, muscle, kidney, tendon). This finding is an argument in favor of a simultaneous transport of free and esterified cholesterol from plasma into these 4 tissues and suggests that the entire lipoprotein particles can penetrate these tissues, with no specificity of one special class. In adrenal, unlike all other tissues: 1) the turnover of esterified cholesterol was achieved mostly by hydrolysis and esterification in situ; 2) a preferential lipoprotein class (LDL) was responsible for the transport of free cholesterol from the plasma.  相似文献   

2.
Nicotinic acid is a commonly used anti-dyslipidemic agent that increases plasma levels of HDL-cholesterol and decrease triglycerides (TG), and VLDL- and LDL-cholesterol. The most well-studied effect of nicotinic acid is its ability to lower plasma free fatty acids, which has been observed in humans and many animal models. However, its ability to raise HDL in humans has not been replicated in animal models, which precludes studying the mechanism of HDL elevation. Here we studied lipid-modulating effects of nicotinic acid in mice carrying genomic DNA fragments that drive expression of various human genes in the mouse liver. Treatment with nicotinic acid reduced serum levels of HDL cholesterol in wild-type and human apolipoprotein B100 (apoB100)-transgenic mice. In contrast, nicotinic acid treatment of mice that express human cholesteryl ester transfer protein (CETP), with or without concomitant apoB100 expression, resulted in a significant increase of HDL cholesterol and reduction of TG, VLDL- and LDL-cholesterol. These data demonstrate a critical role of CETP in nicotinic acid-mediated HDL elevation, and suggest that mice carrying the human CETP gene may be useful animal models for studying the HDL-elevating effect of nicotinic acid.  相似文献   

3.
Inflammation has been proposed to impair HDL function and reverse cholesterol transport (RCT). We investigated the effects of inflammation mediated by zymosan, a yeast glucan, on multiple steps along the RCT pathway in vivo and ex vivo. Acute inflammation with 70 mg/kg zymosan impaired RCT to plasma, liver, and feces similarly by 17-22% (P < 0.05), with no additional block at the liver. Hepatic gene expression further demonstrated no change in ABCG5, ABCB4, and ABCB11 expression but a decline in ABCG8 mRNA (32% P < 0.05). Plasma from zymosan-treated mice had a 21% decrease in cholesterol acceptor ability (P < 0.01) and a 35% decrease in ABCA1-specific efflux capacity (P < 0.01) in vitro. Zymosan treatment also decreased HDL levels and led to HDL remodeling with increased incorporation of serum amyloid A. In addition, cholesterol efflux from cultured macrophages declined with zymosan treatment in a dose dependent manner. Taken together, our results suggest that zymosan impairs in vivo RCT primarily by decreasing macrophage-derived cholesterol entering the plasma, with minimal additional blocks downstream. Our study supports the notion that RCT impairment is one of the mechanisms for the increased atherosclerotic burden observed in inflammatory conditions.  相似文献   

4.
Modulation of the reverse cholesterol transport (RCT) pathway may provide a therapeutic target for the prevention and treatment of atherosclerotic cardiovascular disease (CVD). In the present study, we evaluated a novel 26-amino acid apolipoprotein mimetic peptide (ATI-5261) designed from the carboxyl terminal of apoE, in its ability to mimic apoA-I functionality in RCT in vitro. Our data shows that nascent HDL-like (nHDL) particles generated by incubating cells over-expressing ABCA1 with ATI-5261 increase the rate of specific ABCA1 dependent lipid efflux, with high affinity interactions with ABCA1. We also show that these nHDL particles interact with membrane micro-domains in a manner similar to nHDL apoA-I. These nHDL particles then interact with the ABCG1 transporter and are remodeled by plasma HDL-modulating enzymes. Finally, we show that these mature HDL-like particles are taken up by SR-BI for cholesterol delivery to liver cells. This ATI-5621-mediated process mimics apoA-I and may provide a means to prevent cholesterol accumulation in the artery wall. In this study, we propose an integrative physiology approach of HDL biogenesis with the synthetic peptide ATI-5261. These experiments provide new insights for potential therapeutic use of apolipoprotein mimetic peptides.  相似文献   

5.
The effects of enzymatic action on human low density lipoproteins (LDL) occurring during in vitro incubation of plasma have been studied by chemical analysis, analytical ultracentrifugation, negative stain electron microscopy and X-ray small angle scattering. Chemically, the action of cholesteryl ester exchange and transfer proteins(s) (CEPT) leads to a relative increase in trigylcerides at the expense of cholesteryl esters. Morphologically, the particles maintain their characteristic features detectable by X-ray small angel scattering. Additional action of lecithin/cholesterol acyl transferase (LCAT) causes mainly a decrease in polar lipid contents and a reduction in particle size. The associated changes in the thermotropic transition were found to be strongly correlated to the triglyceride/cholesteryl ester ratio.  相似文献   

6.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol (HDL-C) and lowers LDL cholesterol in dyslipidemic patients; however, the effects of ANA on cholesterol/lipoprotein metabolism in a dyslipidemic hamster model have not been demonstrated. To test whether ANA (60 mg/kg/day, 2 weeks) promoted reverse cholesterol transport (RCT), 3H-cholesterol-loaded macrophages were injected and (3)H-tracer levels were measured in HDL, liver, and feces. Compared to controls, ANA inhibited CETP (94%) and increased HDL-C (47%). 3H-tracer in HDL increased by 69% in hamsters treated with ANA, suggesting increased cholesterol efflux from macrophages to HDL. 3H-tracer in fecal cholesterol and bile acids increased by 90% and 57%, respectively, indicating increased macrophage-to-feces RCT. Mass spectrometry analysis of HDL from ANA-treated hamsters revealed an increase in free unlabeled cholesterol and CE. Furthermore, bulk cholesterol and cholic acid were increased in feces from ANA-treated hamsters. Using two independent approaches to assess cholesterol metabolism, the current study demonstrates that CETP inhibition with ANA promotes macrophage-to-feces RCT and results in increased fecal cholesterol/bile acid excretion, further supporting its development as a novel lipid therapy for the treatment of dyslipidemia and atherosclerotic vascular disease.  相似文献   

7.
The neighboring position of apolipoprotein A-I (apoA-I) and apolipoprotein A-V (apoA-V) gene and the modulation of apoA-V on the concentrations, size and maturation of high density lipoprotein (HDL) may indicate a special relationship between apoA-V and HDL. To assess the effects of apoA-V on HDL structure and related functions in vitro, a series of recombinant HDL (rHDL) were synthesized in vitro with various mass ratios of recombinant apoA-I: apoA-V. An increase in apoA-V in rHDL resulted in enhanced lipid-binding ability, increased phospholipid content and larger particle size. Furthermore, the lipid-free and lipid-bound apoA-V in rHDL showed antioxidant capacity against low density lipoprotein (LDL) in vitro. In THP-1 derived macrophages, apoA-V of rHDL was shown to have no influence on the uptake of oxidized LDL (oxLDL) and intracellular lipid accumulation. Thus, the addition of apoA-V to rHDL resulted in changes in several rHDL properties, including increased lipid-binding ability, phospholipid content, particle size and antioxidant capacity. These alterations may explain the modulation of apoA-V on HDL in vivo and the beneficial functions of apoA-V on atherosclerosis.  相似文献   

8.
The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus-mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-deficient (apoE−/−) or apoA-I-deficient (apoA-I−/−)×apoE−/− mice exacerbated the hypercholesterolemia and increased plasma apoE and triglyceride levels. In apoE−/− mice, the apoE3[K146N/R147W] mutant displaced apoA-I from the VLDL/LDL/HDL region and caused the accumulation of discoidal apoE-containing HDL. The WT apoE3 cleared the cholesterol of apoE−/− mice without induction of hypertriglyceridemia and promoted formation of spherical HDL. A unique property of the truncated apoE3[K146N/R147W]202 mutant, compared with similarly truncated apoE forms, is that it did not correct the hypercholesterolemia. The contribution of LPL and LCAT in the induction of the dyslipidemia was studied. Treatment of apoE−/− mice with apoE3[K146N/R147W] and LPL corrected the hypertriglyceridemia, but did not prevent the formation of discoidal HDL. Treatment with LCAT corrected hypertriglyceridemia and generated spherical HDL. The combined data indicate that the K146N/R147W substitutions convert the full-length and the truncated apoE3[K146N/R147W] mutant into a dominant negative ligand that prevents receptor-mediated remnant clearance, exacerbates the dyslipidemia, and inhibits the biogenesis of HDL.  相似文献   

9.
A high density lipoprotein fraction accumulates in the plasma of patients with alcoholic hepatitis when a severe lecithin:cholesterol acyltransferase (EC 2.3.1.43) deficiency is present. The major apoprotein present in this fraction is arginine-rich protein, the fraction is a preferred substrate for lecithin:cholesterol acyltransferase, and by electron microscopy appears as stacked bilayer discs. It is proposed that the lipoprotein represents the accumulation of nascent high density lipoprotein and is the principal pathway through which arginine-rich protein is secreted by the liver in man. The results also suggest that apoprotein AI is acquired by normal high density lipoprotein during the course of lipoprotein metabolism.  相似文献   

10.
Neutral cholesteryl ester hydrolase (CEH)-mediated hydrolysis of cellular cholesteryl esters (CEs) is required not only to generate free cholesterol (FC) for efflux from macrophages but also to release FC from lipoprotein-delivered CE in the liver for bile acid synthesis or direct secretion into the bile. We hypothesized that hepatic expression of CEH would regulate the hydrolysis of lipoprotein-derived CE and enhance reverse cholesterol transport (RCT). Adenoviral-mediated CEH overexpression led to a significant increase in bile acid output. To assess the role of hepatic CEH in promoting flux of cholesterol from macrophages to feces, cholesterol-loaded and [(3)H]cholesterol-labeled J774 macrophages were injected intraperitoneally into mice and the appearance of [(3)H]cholesterol in gallbladder bile and feces over 48 h was quantified. Mice overexpressing CEH had significantly higher [(3)H]cholesterol radiolabel in bile and feces, and it was associated with bile acids. This CEH-mediated increased movement of [(3)H]cholesterol from macrophages to bile acids and feces was significantly attenuated in SR-BI(-/-) mice. These studies demonstrate that similar to macrophage CEH that rate-limits the first step, hepatic CEH regulates the last step of RCT by promoting the flux of cholesterol entering the liver via SR-BI and increasing hepatic bile acid output.  相似文献   

11.
12.
The transport of cholesterol from extrahepatic tissues into plasma (reverse cholesterol transport) and the possible requirement for lecithin:cholesterol acyltransferase was examined in the rat. One hour after removal of the liver plasma cholesterol ester concentrations were significantly increased by 20%, whereas free cholesterol concentrations were unchanged. The lecithin:cholesterol acyltransferase inhibitor, 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) was administered to eviscerated rats. It inhibited plasma lecithin:cholesterol acyltransferase activity by 90% which in turn totally prevented the increase in plasma cholesterol ester concentrations. In addition, heat-inactivated plasma from DTNB-treated eviscerated rats was 50% more reactive toward a standard source of lecithin:cholesterol acyltransferase compared to plasma from control or untreated eviscerated rats. These data suggest that in the rat a reactive lecithin:cholesterol acyltransferase substrate is formed extrahepatically. Together with lecithin:cholesterol acyltransferase, this reactive substrate removes cholesterol from peripheral tissues.  相似文献   

13.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

14.
In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis on the efficacy of the RCT pathway in FH patients. LDL apheresis markedly reduced abnormal accelerated cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer from HDL to LDL, thus reducing their CE content. Equally, we observed a major decrease (-53%; P < 0.0001) in pre-β1-HDL levels. The capacity of whole plasma to mediate free cholesterol efflux from human macrophages was reduced (-15%; P < 0.02) following LDL apheresis. Such reduction resulted from a marked decrease in the ABCA1-dependent efflux (-71%; P < 0.0001) in the scavenger receptor class B type I-dependent efflux (-21%; P < 0.0001) and in the ABCG1-dependent pathway (-15%; P < 0.04). However, HDL particles isolated from FH patients before and after LDL apheresis displayed a similar capacity to mediate cellular free cholesterol efflux or to deliver CE to hepatic cells. We demonstrate that rapid removal of circulating lipoprotein particles by LDL apheresis transitorily reduces RCT. However, LDL apheresis is without impact on the intrinsic ability of HDL particles to promote either cellular free cholesterol efflux from macrophages or to deliver CE to hepatic cells.  相似文献   

15.
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.  相似文献   

16.
Chronic hypothyroidism is frequently associated with atherosclerosis due to increased cholesterol plasma levels; nevertheless, the contribution of impaired reverse cholesterol transport (RCT) in this process has not been completely elucidated. The aim of this study was to evaluate the effect of thyroidectomy (Htx) upon the main stages of RCT in rats. Plasma lipid alterations induced by thyroidectomy showed a slight, but significant, reduction of total plasma triglycerides, a 300% increase of LDL-cholesterol and a 25% decrease in HDL-cholesterol compared to control rats. We evaluated the first stage of RCT determining 3H-cholesterol efflux in Fu5AH cells. The capacity of HDL obtained from Htx rats to promote cholesterol efflux was similar to that of controls. Lecithin:cholesterol acyltransferase (LCAT) activity, the second stage and the driving force of RCT was 30% lower in Htx animals compared to controls, as determined by reconstituted HDL used as an external substrate. Lipoproteins are remodeled by hepatic lipase; the mean activity of this enzyme in postheparin plasma of Htx animals was reduced by 30% compared to controls, thus suggesting an impaired HDL remodeling by this enzyme in the hypothyroid status. In contrast, lipoprotein lipase activity in the Htx group was unchanged. In summary, this study demonstrates that chronic hypothyroidism in the rat induced an impaired RCT mainly at the cholesterol esterification, and HDL remodeling mediated by hepatic lipase. The latter probably results in an abnormal HDL structure, i.e. phospholipid enrichment, which contributes to decrease HDL-apo AI fractional catabolic rates.  相似文献   

17.
High level of high-density lipoprotein cholesterol (HDL-cholesterol) is inversely correlated to the risk of atherosclerotic cardiovascular disease. The protective effect of HDL is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and is later delivered to the liver for further metabolism and bile excretion. We have previously demonstrated that P2Y13 receptor is critical for RCT and that intravenous bolus injection of cangrelor (AR-C69931MX), a partial agonist of P2Y13 receptor, can stimulate hepatic HDL uptake and subsequent lipid biliary secretion without any change in plasma lipid levels. In the present study, we investigated the effect of longer-term treatment with cangrelor on lipoprotein metabolism in mice. We observed that continuous delivery of cangrelor at a rate of 35 μg/day/kg body weight for 3 days markedly decreased plasma HDL-cholesterol level, by increasing the clearance of HDL particles by the liver. These effects were correlated to an increase in the rate of biliary bile acid secretion. An increased expression of SREBP-regulated genes of cholesterol metabolism was also observed without any change of hepatic lipid levels as compared to non-treated mice. Thus, 3-day cangrelor treatment markedly increases the flux of HDL-cholesterol from the plasma to the liver for bile acid secretion. Taken together our results suggest that P2Y13 appears a promising target for therapeutic intervention aimed at preventing or reducing cardiovascular risk.  相似文献   

18.
Cholesteryl ester transfer protein (CETP), a key regulator of high-density lipoprotein (HDL) metabolism, induces HDL remodeling by transferring lipids between apolipoprotein B-containing lipoproteins and HDL, and/or by promoting lipid transfer between HDL subparticles. In this study, we investigated the mechanism as to how CETP induces the generation of lipid-poor particles (pre-β-HDL) from HDL, which increases ATP-binding cassette transporter 1-mediated cholesterol efflux. This CETP-dependent HDL remodeling is enhanced by the CETP modulator dalcetrapib both in plasma and isolated HDL. The interaction of dalcetrapib with cysteine 13 of CETP is required, since this effect was abolished when using mutant CETP in which cysteine 13 was substituted for a serine residue. Other thiol-containing compounds were identified as CETP modulators interacting with cysteine 13 of CETP. In order to mimic dalcetrapib-bound CETP, mutant CETP proteins were prepared by replacing cysteine 13 with the bulky amino acid tyrosine or tryptophan. The resultant mutants showed virtually no CETP-dependent lipid transfer activity but demonstrated preserved CETP-dependent pre-β-HDL generation. Overall, these data demonstrate that the two functions of CETP i.e., cholesteryl ester transfer and HDL remodeling can be uncoupled by interaction of thiol-containing compounds with cysteine 13 of CETP or by introducing large amino acid residues in place of cysteine 13.  相似文献   

19.
20.
Turbidity developed when phenformin was added to human serum; this turbidity increased in a sigmoidal fashion with rising concentrations of phenformin (5–50 nmole/1). Centrifugation produced clearing of the solution, with collection of particulate matter on the surface of the sera.Extraction of control, and phenformin-treated sera with petroleum ether for 15 min. revealed that cholesterol and triglyceride were responsible for the turbidity. Different sera produced different turbidities with a given concentration of phenformin. No significant simple correlation existed between turbidity and serum cholesterol and/or triglyceride levels. The turbidities, produced by the addition of a constant concentration of phenformin to a series of diluted serum samples, were linearly related to the amount of serum present.The turbidities acquired by purified very-low density (VLDL), low-density (LDL), and high-density lipoprotein (HDL) fractions with phenformin were additive, and the turbidity of phenformin-treated serum was accounted for by these lipoprotein fractions. Serum free of lipoproteins did not become turbid when exposed to phenformin. Phenformin added to serum which had previously been delipidated, failed to produce turbidity. The turbidity produced by phenformin was reversible, because it could easily be cleared by dialysis.No significant differences in quantitative immunochemical reactivities were observed when control serum was compared with the subnatant of phenformin-treated serum, as determined by single radial immunodiffusion with LDL antibodies.These in vitro observations may be related to the in vivo hypolipidemic action of phenformin on hyperlipidemic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号