首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of ischemia on the stability, i.e. the permeability of the lysosomal membrane of rat liver has been studied using quantitative histochemical analysis of acid phosphatase activity. Ischemia in vitro was performed for 0–240 min at 37° C and ischemia in vivo for 60 min was followed by 1, 5, 24 and 48 h of reperfusion. Acid phosphatase activity was demonstrated in cryostat sections using naphthol AS-BI phosphoric acid as substrate and polyvinyl alcohol was added to the incubation medium to counteract diffusion phenomena. Ischemia in vitro up to 240 min did not affect the localization nor the total activity of acid phosphatase activity. After 60-min ischemia in vivo followed by 1-h reperfusion distinct areas showed decreased acid phosphatase activity. A further decrease in activity was observed after 5 h reperfusion. Final reaction product generated by acid phosphatase activity was rather diffusely distributed in border zones between normal and damaged tissue after 24 and 48 h of reperfusion following 60 min ischemia in vivo. It is concluded that not ischemia itself but rather reperfusion affects the stability of the lysosomal membrane due to the occurrence of oxygen-derived free radicals and/or imbalanced Ca2+ concentration. Restoration of the blood flow causes leakage of acid phosphatase from the lysosomes into the cytoplasm of liver parenchymal cells and from there to the blood.  相似文献   

2.
The effect of ischemia induced acute renal failure (ARF) on the transport of phosphate (Pi) after early (15-30 min) and prolonged (60 min) ischemia in the brush border membrane vesicles (BBMV) from rat renal cortex was studied. Sodium-dependent transport of Pi declined significantly and progressively due to ischemia. Western blot analysis of BBM from ischemic rats showed decreased expression of NaPi-2. A compensatory increase was observed in Pi uptake in BBMV from contralateral kidneys. There was no significant difference in NaPi-2 expression between BBMV from sham and contralateral kidneys. Early blood reperfusion for 15 min after 30 min ischemia caused further decline in Pi uptake. Prolonged reperfusion for 120 min caused partial reversal of transport activities in 30-min ischemic rats. However, no improvement in the transport of Pi was observed in 60-min ischemic rats after 120 min of blood reperfusion. Kinetic studies showed that the effect of ischemia and blood reperfusion was dependent on the Vmax of the Na-Pi transporter. Western blot analysis showed increased expression of NaPi-2 in the BBMs from ischemia-reperfusion animals. Further, a shift in the association of Na ions to transport one molecule of Pi was observed under different extracellular Na concentrations [Na]o. Feeding rats with low Pi diet and/or treatment with thyroid hormone (T3) prior to ischemia resulted in increased basal Pi transport. Ischemia caused similar decline in Pi transport in BBM from LPD and/or T3 animals. However, recovery in these animals was faster than the normal Pi diet fed (NPD) animals. The study suggests a change in the intrinsic properties of the Na-Pi transporter in rat kidneys due to ischemia. The study also indicates that treatment with T3 and feeding LPD prior to ischemia caused faster recovery of phosphate uptake due to ischemia-reperfusion injury.  相似文献   

3.
To understand the mechanisms underlying ischemia-reperfusion-induced renal proximal tubule damage, we analyzed the expression of the Na+-dependent phosphate (Na+/Pi) cotransporter NaPi-2 in brush border membranes (BBM) isolated from rats which had been subjected to 30 min renal ischemia and 60 min reperfusion. Na+/Pi cotransport activities of the BBM vesicles were also determined. Ischemia caused a significant decrease (about 40%, P < 0.05) in all forms of NaPi-2 in the BBM, despite a significant increase (31+/-3%, P < 0.05) in the Na+/Pi cotransport activity. After reperfusion, both NaPi-2 expression and Na+/Pi cotransport activity returned to control levels. In contrast with Na+/Pi cotransport, ischemia significantly decreased Na+-dependent glucose cotransport but did not affect Na+-dependent proline cotransport. Reperfusion caused further decreases in both Na+/glucose (by 60%) and Na+/proline (by 33%) cotransport. Levels of NaPi-2 were more reduced in the BBM than in cortex homogenates, suggesting a relocalization of NaPi-2 as a result of ischemia. After reperfusion, NaPi-2 levels returned to control values in both BBM and homogenates. These data indicate that the NaPi-2 protein and BBM Na+/Pi cotransport activity respond uniquely to reversible renal ischemia and reperfusion, and thus may play an important role in maintaining and restoring the structure and function of the proximal tubule.  相似文献   

4.
The effect of ischemia on the stability, i.e. the permeability of the lysosomal membrane of rat liver has been studied using quantitative histochemical analysis of acid phosphatase activity. Ischemia in vitro was performed for 0-240 min at 37 degrees C and ischemia in vivo for 60 min was followed by 1, 5, 24 and 48 h of reperfusion. Acid phosphatase activity was demonstrated in cryostat sections using naphthol AS-BI phosphoric acid as substrate and polyvinyl alcohol was added to the incubation medium to counteract diffusion phenomena. Ischemia in vitro up to 240 min did not affect the localization nor the total activity of acid phosphatase activity. After 60-min ischemia in vivo followed by 1-h reperfusion distinct areas showed decreased acid phosphatase activity. A further decrease in activity was observed after 5 h reperfusion. Final reaction product generated by acid phosphatase activity was rather diffusely distributed in border zones between normal and damaged tissue after 24 and 48 h of reperfusion following 60 min ischemia in vivo. It is concluded that not ischemia itself but rather reperfusion affects the stability of the lysosomal membrane due to the occurrence of oxygen-derived free radicals and/or imbalanced Ca2+ concentration. Restoration of the blood flow causes leakage of acid phosphatase from the lysosomes into the cytoplasm of liver parenchymal cells and from there to the blood.  相似文献   

5.
Reperfusion of ischemic liver results in the generation of oxygen radicals, nitric oxide (NO) and their reaction product peroxynitrite, all of which may cause strand breaks in DNA, which activate the nuclear enzyme poly(ADP ribose)synthase (PARS). This results in rapid depletion of intracellular nicotinamide adenine dinucleotide and adenosine 5'-triphosphate (ATP) and eventually induces irreversible cytotoxicity. In this study, we demonstrated that niacinamide, a PARS inhibitor, attenuated ischemia/reperfusion (I/R)-induced liver injury. Ischemia was induced by clamping the common hepatic artery and portal vein of rats for 40 min. Thereafter, flow was restored and the liver was reperfused for 90 min. Blood samples collected prior to I and after R were analyzed for methyl guanidine (MG), NO, tumor necrosis factor (TNF-alpha) and ATP. Blood levels of aspartate transferase (AST), alanine transferase (ALT) and lactate dehydrogenase (LDH) which served as indexes of liver injury were measured. This protocol resulted in elevation of the blood NO level (p < 0.01). Inflammation was apparent, as TNF-alpha and MG levels were significantly increased (p < 0.05 and p < 0.001). AST, ALT and LDH were elevated 4- to 5-fold (p < 0.001), while ATP was significantly diminished (p < 0.01). After administration of niacinamide (10 mM), liver injury was significantly attenuated, while blood ATP content was reversed. In addition, MG, TNF-alpha and NO release was attenuated. These results indicate that niacinamide, presumably by acting with multiple functions, exerts potent anti-inflammatory effects in I/R-induced liver injury.  相似文献   

6.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。  相似文献   

7.
Reversibility of Nimodipine Binding to Brain in Transient Cerebral Ischemia   总被引:2,自引:0,他引:2  
Using autoradiography, we have measured the in vivo binding of [3H]nimodipine to brain in a rat model of reversible cerebral ischemia. Ischemia was induced by simultaneous occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery by microaneurysm clips. Rats were studied after 15 min of ischemia (ischemic group) or after 45 min of reperfusion following 15 min of ischemia (reperfused group). Regional cerebral blood flow (CBF) was determined autoradiographically using [14C]iodoantipyrine in both ischemic (n = 6) and reperfused (n = 6) groups. During ischemia blood flow in the territory of the MCA was depressed and recovered to normal only in the distal territory of the MCA following reperfusion. [3H]Nimodipine binding in the ischemic group (n = 12) was elevated in ischemic brain regions and declined significantly (p < 0.01) in these regions in the reperfused group (n = 11). The ratio of the volume of cortex showing increased binding to the total volume of the forebrain was 0.113 +/- 0.025 (mean +/- SD) in the ischemic group and declined to 0.080 +/- 0.027 following reperfusion (p < 0.005). In general, infarct was only observed in regions showing persistent elevation of nimodipine binding following reperfusion as determined by histology performed in a separate group of rats (n = 8) after 24 h of reperfusion. We conclude that increased nimodipine binding to ischemic tissue is initially reversible with prompt reestablishment of CBF and is a sensitive indicator of early and reversible ischemia-induced cerebral dysfunction.  相似文献   

8.
We very recently showed (using a blood-free perfusion model) that cold preservation sensitized rat hepatocyte functions to rewarming ischemic injury and that the injury can be prevented by repleting high-energy adenylates in the liver by short-term oxygenated warm reperfusion. Here we investigated whether short-term reperfusion after the preservation period can improve hepatic graft function in a blood reperfusion model. Eighteen-hour cold-preserved rat livers either untreated (Group A) or pretreated by 30-min oxygenated warm reperfusion after preservation (Group B) were subjected to 20-min ischemic rewarming and then reperfused with blood. Livers in Group B compared to Group A exhibited approx. three times increased bile production and bromosulfophthalein excretion, nearly 7-fold decreased swelling, and 1.2-fold improved blood flow. These results suggest that repletion of the energy by short-term oxygenated reperfusion after prolonged preservation may improve markedly initial hepatic graft function.  相似文献   

9.
The effect of spinal cord ischemia (10, 20, and 40 min) and post-ischemic reperfusion (10, 30, and 60 min) on lipid peroxidation and phospholipids was investigated. Spinal cord ischemia was accompanied by lipolytic processes with significant changes in concentration of lipid peroxidation products (LPP). Reestablishment of the blood supply after 10 min ischemia was accompanied by significantly increased levels of thiobarbituric acid reactive substances (TBA-RS) after 10 and 30 min of reperfusion. Following 20 and 40 min ischemia a significant increase was observed at all reperfusion periods. Ischemia itself significantly reduced the concentration of phosphatidyl inositol (IP), phosphatidyl ethanolamine (EP) and ethanolamine plasmalogens (Epls). Significant changes were observed in concentration of phosphatidyl serine (SP) too, but only after 20 and 40 min of ischemia. The concentration of phosphatidic acid (PA) was significantly reduced only after 10 min of ischemia. The onset of reperfusion after ischemia was accompanied by a diverse pattern of changes in PA, IP, Epls and SP, while the concentration of EP remained at the above mentioned ischemic intervals.  相似文献   

10.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

11.
Effects of the duration of preceding ischemia on the recovery of liver energy metabolism after reperfusion were investigated. Liver ATP level was depleted after the first 30 min of ischemia, and the decrease remained steady thereafter. Recovery of ATP depended on the preceding ischemic time, i.e., 81.5%, 66.4% and 39.5% recovery of the control level were observed after 60 min of reperfusion following 30 min, 60 min and 120 min of ischemia, respectively. Ischemia-induced mitochondrial dysfunction depended on the duration of ischemia. Mitochondrial function was recovered fully after 60 min of reperfusion following both 30 min and 60 min of ischemia. However, deterioration of mitochondrial function did not recover significantly after 60 min of reperfusion following 120 min of ischemia. Similar decreases in adenylate energy charge were observed irrespective of the duration of ischemia, and it recovered fully after 60 min of reperfusion following 30 min, 60 min and 120 min of ischemia. These results suggest that not the energy charge but ATP level itself is a reliable marker of liver energy status.  相似文献   

12.
The contractile and pump function of guinea pig hearts was evaluated 40 min after total normothermic ischemia and 30 min reperfusion. A half of the hearts was reperfused with rapid mode restoration of the preischemic coronary flow ("sudden" reperfusion, SR), while the other half was reperfused with gradual mode restoration (GR) of coronary flow by 2 ml/min each 4 min till the initial level. The cardiac output and external work after SR constituted 49 and 28 of initial values, while after GR-87 and 71%, respectively. A distinct rise in minimal diastolic left ventricular pressure in the former group indicates a deteriorated filling of the heart. The total pool of adenine nucleotides and ATP content remained almost unchanged after GR: while after SR they decreased to 61 and 54% of the initial level, and myocardial lactate content was three times higher. The beneficial effect of GR seems to be due to better preservation or restoration of ATP content and more profound relaxation of the heart.  相似文献   

13.
Perfused guinea-pig hearts, which were analyzed by 31P-MRS, were subjected to 30 and 60 minute ischemia and reperfused using two perfusates, one containing 200 microM inosine, and the other without inosine. After 4 hour reperfusion with inosine, ATP levels increased to 95.5% of preischemic value (30 minute ischemia) and 76.2% (60 minute ischemia). However, after 4 hour reperfusion without inosine, ATP levels increased only to 72.2% (30 minute ischemia) and to 48.2% (60 minute ischemia). In 60 minute ischemic hearts reperfused with inosine, left ventricular maximal positive dp/dt (LV dp/dt) was improved significantly to 82.4% after 6 hour reperfusion in contrast to hearts reperfused without inosine (43.1%). Administration of inosine was very useful for increasing myocardial gross energy product and improving cardiac performance.  相似文献   

14.
Using the isolated perfused rat liver, we investigated the relationship of glutathione (GSH) with reactive oxygen species (ROS) generation and liver cell damage during ischemia/reperfusion in normal and GSH-depleted conditions. Lucigenin-enhanced chemiluminescence was used as a sensitive index of tissue ROS generation. After 30 minutes of equilibration, livers were subjected to global ischemia for various times (60 or 90 minutes) and then reperfused for another 120 minutes. Intracellular ROS levels increased sharply at the onset of reperfusion and then declined slowly. After 30 to 60 minutes of reperfusion, ROS levels started to increase progressively in a linear fashion. However, sinusoidal glutathione disulfide release did not increase during reperfusion in the same livers, suggesting that intracellular ROS generation is too low to cause a significant increase in GSH oxidation. Pretreatment with phorone (300 mg/kg intrapentoneally [ip]), which reduced hepatic GSH by 90%, did not cause any difference in intracellular ROS generation compared with the control livers. There were also no significant differences in lactate dehydrogenase and thiobarbituric acid reactive substances (TBARS) release between the control and phorone-treated livers during reperfusion after various times of ischemia. These data indicate that ROS generation in the normal isolated perfused liver during ischemia/reperfusion is extremely low and intracellular GSH does not serve as a major intracellular defense system against such a low oxidative stress.  相似文献   

15.
Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12-24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 +/- 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 +/- 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers.  相似文献   

16.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   

17.
The possible relationship of the atractyloside-sensitive adenine nucleotide translocase activity, oxidative phosphorylation, and the recovery of ventricular contractility following reperfusion of the ischemic isolated rat heart was studied. Five minutes of total global ischemia without reperfusion produced a significant depression in adenine nucleotide translocase in subsarcolemmal mitochondria (SLM), whereas a minimum of 10 min ischemia was required to observe a significant depression in interfibrillar mitochondria (IFM). Increasing durations of ischemia resulted in a progressively larger depression in translocase activity, with a maximum depression of approximately 75% seen in both populations following 20 min ischemia. In contrast, oxidative phosphorylation was totally unaffected in either mitochondrial population following up to 20 min of ischemia. We assessed whether translocase activity or oxidative phosphorylation were related to contractile recovery in hearts reperfused following various durations of ischemia. In SLM, translocase activity was further depressed following reperfusion compared with pre-reperfusion ischemic values, whereas with IFM only reperfusion following 5 min ischemia produced a further depression in translocase values. Oxidative phosphorylation rates of SLM and IFM were significantly depressed following reperfusion of ischemic hearts, although SLM exhibited a generally higher sensitivity in this regard. In reperfused hearts, an overall significant relationship was found between oxidative phosphorylation rate and adenine translocase activity as well as between translocase activity and post-reperfusion contractile recovery. These data show that ischemia can produce a significant depression in translocase activity in the absence of any change in oxidative phosphorylation. The results also suggest that the depression in mitochondrial ADP/ATP translocase and subsequent inhibition of oxidative phosphorylation in the reperfused heart may represent one of the important contributory mechanisms involved in cardiac failure and injury during acute ischemia and reperfusion.  相似文献   

18.
To understand the subcellular basis of contractile failure due to ischemia-reperfusion injury, effects of 20, 60, and 90 min of global ischemia followed by 30 min of reperfusion were examined in isolated guinea pig hearts. Cardiac ultrastructure and function as well as Ca2+ transport abilities of both mitochondrial and microsomal fractions were determined in control, ischemic, and reperfused hearts. Hearts were unable to generate any contractile force after 20 min of ischemia and showed a 75% recovery upon reperfusion. However, there were no significant changes in the subcellular Ca2+ transport in the 20-min ischemic or reperfused hearts. When hearts were made ischemic for 60 and 90 min, the recovery of contractile force on reperfusion was 50 and 7%, respectively. There was a progressive decrease in mitochondrial and microsomal Ca2+ binding and uptake activities after 60 and 90 min of ischemia; these changes were evident at various times of incubation period and at different concentrations of Ca2+. Mitochondrial Ca2+ transport changes were only partially reversible upon reperfusion after 60 and 90 min of ischemia, whereas the microsomal Ca2+ binding, uptake and Ca2+ ATPase activities deteriorated further upon reperfusion of the 90-min ischemic hearts. Ultrastructural changes increased with the duration of the ischemic insult and reperfusion injury was extensive in the 90-min ischemic hearts. These data show that the lack of recovery of contractile function upon reperfusion after a prolonged ischemic insult was accompanied by defects in sarcoplasmic reticulum Ca2+ transporting properties and structural damage.  相似文献   

19.
Aims Brain ischemia–reperfusion injury remains incompletely understood but appears to involve a complex series of interrelated biochemical pathways caused mainly by a burst of reactive oxygen species (ROS). In the present work we studied the impact of postischemic condition in the early phase of reperfusion on plasma and blood cells. Methods Transient forebrain ischemia was induced in Wistar rats by four-vessel occlusion model. Blood samples collected during postischemic reperfusion 20, 40, 60, 90, and 120 min after ischemia were used for assessing breaks of lymphocyte DNA, fluorimetric measurement of whole blood glutamate concentration, and spectrophotometrical determination of SOD activity in plasma and blood cells. Results Our results showed the most interesting changes of all observed parameters mainly at 40 and 120 min of reperfusion, when we observed peak DNA damage of lymphocytes and highest glutamate level and total and Cu/Zn SOD activity. At those time points, Mn SOD activity was low in plasma, as well as in blood cells. On the contrary, at 60 and 90 min, all studied parameters were approximately at the level of control. Conclusion Ischemia/reperfusion injury has influence on blood cells and has at least two waves of impact on DNA damage of peripheral lymphocytes, affects activity of major antioxidant enzymes SODs, as well as blood glutamic acid level. Elevation of Mn SOD activity probably plays an important role in the processes of elimination of postischemic damage in blood cells.  相似文献   

20.
The effects of L-propionylcarnitine on mechanical function, creatine phosphate and ATP content, and lactate dehydrogenase leakage were studied in isolated perfused rat hearts exposed to global no-flow ischemia for 30 min followed by reperfusion for 20 min. Five and 10 mM L-propionylcarnitine resulted in a 100% recovery of left ventricular-developed pressure, whereas the recovery was only 40% in the hearts perfused without this agent. Ischemia-reperfusion caused a 85% loss of creatine phosphate and a 77% loss of ATP, which was prevented by 10 mM L-propionylcarnitine. Five millimolar L-propionylcarnitine protected the heart from the loss of creatine phosphate but not from the loss of ATP. Ten millimolar L-propionylcarnitine failed to improve the postischemic left ventricular-developed pressure, when it was added to the perfusate only after ischemia. L-propionylcarnitine alleviated the decrease of coronary flow in the reperfused hearts. Lactate dehydrogenase leakage was aggravated in the beginning of the reperfusion period by 10 mM L-propionylcarnitine. This adverse effect was, however, transient. L-Propionylcarnitine provides protection for the postischemic reperfused heart in a dose-dependent manner. The optimal time for administration is before the ischemic insult. High doses of this compound may perturb cell membrane integrity. Moreover, the present data point to an intracellular, metabolic, and perhaps anaplerotic mechanism of action of L-propionylcarnitine in cardiac ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号