首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulatory effects of static magnetic fields on blood pressure in rabbits   总被引:7,自引:0,他引:7  
Acute effects of locally applied static magnetic fields (SMF) on pharmacologically altered blood pressure (BP) in a central artery of the ear lobe of a conscious rabbit were evaluated. Hypotensive and vasodilator actions were induced by a Ca(2+) channel blocker, nicardipine (NIC). Hypertensive and vasoconstrictive actions were induced by a nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME). The hemodynamic changes in the artery exposed to SMF were measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, BP changes in a central artery contralateral to that of the exposed ear lobe were monitored. SMF intensity was 1 mT and the duration of exposure was 30 min. A total of 180 experimental trials were carried out in 34 healthy adult male rabbits weighing 2.6-3.8 kg. Six experimental procedures were chosen at random: (1) sham exposure without pharmacological treatment; (2) SMF exposure alone; (3) decreased BP induced by a single intravenous (iv) bolus injection of NIC (100 microM/kg) without SMF exposure; (4) decreased BP induced by injection of NIC with SMF exposure; (5) increased BP induced by a constant iv infusion of L-NAME (10 mM/kg/h) without SMF exposure; (6) increased BP induced by infusion of L-NAME with SMF exposure. The results demonstrated that SMF significantly reduced the vasodilatation with enhanced vasomotion and antagonized the reduction of BP via NIC-blocked Ca(2+) channels in vascular smooth muscle cells. In addition, SMF significantly attenuated the vasoconstriction and suppressed the elevation of BP via NOS inhibition in vascular endothelial cells and/or central nervous system neurons. These results suggest that these modulatory effects of SMF on BP might, in part, involve a feedback control system for alteration in NOS activity in conjunction with modulation of Ca(2+) dynamics.  相似文献   

2.
We showed previously in rabbits that 0.2 and 0.35 T static magnetic field (SMF) modulated systemic hemodynamics by arterial baroreceptors. We now have measured the effect of 0.25 T SMF on microcirculation within cutaneous tissue of the rabbit ear lobe by the rabbit ear chamber (REC) method. Forty experimental runs (20 controls and 20 SMF) were carried out in eight different rabbits with an equal number of control and SMF experiments on each individual. Rabbits were sedated by pentobarbital sodium (5 mg/kg/h, i.v.) during the entire 80 min experiment. SMF was generated by four neodium-iron-boron alloy (Nd2-Fe14-B) magnets (15 x 25 x 30 mm, Neomax, PIP - Tokyo Co., Ltd., Tokyo, Japan), positioned around the REC on the observing stage of an optical microscope. The direct intravital microscopic observation of the rabbit's ear microvascular net, along with simultaneous blood flow measurement by microphotoelectric plethysmography (MPPG), were performed PRE (20 min, baseline), DURING (40 min), and POST (20 min) magnetic field exposure. The control experiments were performed under the same conditions and according to the same time course, but without magnetic field. Data were analyzed comparing MPPG values and percent change from baseline in the same series, and between corresponding sections of control and SMF runs. In contrast to control series (100+/-0.0%-90.0+/-5.4%-87.7+/-7.1%, PRE-EXPOSURE-POST), after magnetic field exposure we observed increased blood flow (100+/-0.0%-117.8+/-9.6%*-113.8+/-14.0%, *P<0.05) which gradually decreased after exposure cessation. We propose that long exposure of a high level nonuniform SMF probably modifies microcirculatory homeostasis through modulation of the local release of endothelial neurohumoral and paracrine factors that act directly on the smooth muscle of the vascular wall, presumably by affecting ion channels or second messenger systems.  相似文献   

3.
Static magnetic fields (SMF) in the millitesla (mT) range have been reported to modulate microcirculatory hemodynamics and/or blood pressure (BP) under pharmacologically modified state in mammals. This study was designed to investigate the acute effects of local application of a SMF to neck or pelvic region under pharmacologically modulated BP; norepinephrine (NE)-induced hypertension as well as an L-type voltage-gated Ca(2+) channel blocker, nicardipine (NIC)-induced hypotension in conscious rabbits. Magnetic flux densities were up to 5.5 mT and the spatial magnetic gradient peaked in neck (carotid sinus baroreceptor) region at the level of approximately 0.06 mT/mm. The duration of exposure was 30 min (including 10 min of pretreatment) and the effects on BP were investigated up to 100 min postexposure. Baroreflex sensitivity (BRS) was estimated from invasive recordings of systolic BP and pulse interval. Neck exposure to 5.5 mT significantly attenuated the pharmacologically induced vasoconstriction or vasodilation, and subsequently suppressed the increase or decrease in BP compared with sham exposure. In contrast, pelvic exposure to 5.5 mT did not significantly antagonized NE-elevated BP or NIC-reduced BP. The neck exposure to 5.5 mT has a biphasic and restorative effect on vascular tone and BP acting to normalize the tone and BP. The neck exposure to 5.5 mT caused a significant increase in BRS in NE-elevated BP compared with sham exposure. The buffering effects of the SMF on increased hemodynamic variability under NE-induced high vascular tone and NIC-induced low vascular tone might be, in part, dependent on baroreflex pathways, which could modulate NE-mediated response in conjunction with Ca(2+) dynamics.  相似文献   

4.
Pulmonary vascular responses to acetylcholine were compared under resting and high tone conditions of the intact-chest rabbit. Under resting tone conditions, intralobar injections of acetylcholine increased lobar arterial pressure in a dose-related manner. The pressor responses to acetylcholine under resting conditions were blocked by meclofenamate, indomethacin, atropine, and pirenzepine. When lobar vascular resistance was raised to a high steady level, low doses of acetylcholine decreased lobar arterial pressure, whereas higher doses elicited a biphasic response with the pressor component predominating at the highest dose studied. Under high tone conditions, only the pressor component of the response was blocked by meclofenamate or indomethacin, whereas pressor and depressor responses were blocked by atropine or the 600-micrograms/kg iv dose of pirenzepine. Pressor responses to acetylcholine under resting and high tone conditions were blocked by pirenzepine (50 micrograms/kg iv), whereas gallamine had no effect on responses to acetylcholine. The 50-micrograms/kg iv dose of pirenzepine had no effect on depressor responses or the depressor component of the response to acetylcholine. The present data support the concept that acetylcholine has significant cyclooxygenase-dependent pressor activity in the rabbit pulmonary vascular bed and suggest that this response is mediated by a muscarinic M1-type receptor. These data also show that, under high tone conditions, a vasodilator response or a vasodilator component of a biphasic response is unmasked. This response is not dependent on the release of cyclooxygenase products and is mediated by a muscarinic receptor that is neither of the M1- nor the M2-type.  相似文献   

5.
Acute effects of whole body exposure to static magnetic field (SMF) on pharmacologically induced hypertension in a conscious rabbit were evaluated. Hypertensive and vasoconstrictive actions were induced by norepinephrine (NE) or a nonselective nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-l-arginine methyl ester (l-NAME). The hemodynamics in a central artery of the ear lobe was measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, blood pressure (BP) changes in a central artery, contralateral to that of the MPPG measured ear lobe, were monitored. Magnetic flux densities were 5.5 mT (Bmax), the magnetic gradient peaked in the throat at the level of approximately 0.09 mT/mm, and the duration of exposure was 30 min. The results demonstrated that under normal physiological conditions without treatment of pharmacological agents, there were no statistically significant differences in the hemodynamics and BP changes between the sham and the SMF exposure alone. Under pharmacologically induced hypertensive conditions, the whole body exposure to nonuniform SMF with peak magnetic gradient in the carotid sinus baroreceptor significantly attenuated the vasoconstriction and suppressed the elevation of BPs. These findings suggest that antipressor effects of the SMF on the hemodynamics under NE or l-NAME induced high vascular tone might be, in part, dependent on modulation of NE mediated response in conjunction with alteration in NOS activity, thereby modulating BPs.  相似文献   

6.
The effects of an increase in base-line tone on pulmonary vascular responses to acetylcholine were investigated in the pulmonary vascular bed of the intact-chest cat. Under conditions of controlled blood flow and constant left atrial pressure, intralobar injections of acetylcholine under low-tone base-line conditions increased lobar arterial pressure in a dose-related manner. When tone was increased moderately by alveolar hypoxia, acetylcholine elicited dose-dependent decreases in lobar arterial pressure, and at the highest dose studied, acetylcholine produced a biphasic response. When tone was raised to a high steady level with the prostaglandin analogue, U46619, acetylcholine elicited marked dose-related decreases in lobar arterial pressure. Atropine blocked both vasoconstrictor responses at low tone and vasodilator responses at high tone, whereas meclofenamate and BW 755C had no effect on responses to acetylcholine at low or high tone. The vasoconstrictor response at low tone was blocked by pirenzepine (20 and 50 micrograms/kg iv) but not gallamine (10 mg/kg iv). The vasodilator response at high tone was not blocked by pirenzepine (50 micrograms/kg iv) or gallamine or pancuronium (10 mg/kg iv). The present data support the concept that pulmonary vascular responses to acetylcholine are tone dependent and suggest that the vasoconstrictor response under low-tone conditions is mediated by a high-affinity muscarinic (M1)-type receptor. These data also suggest that vasodilator responses under high-tone conditions are mediated by muscarinic receptors that are neither M1 nor M2 low-affinity muscarinic-type receptor and that responses to acetylcholine are not dependent on the release of cyclooxygenase or lipoxygenase products.  相似文献   

7.
Methylene blue selectively inhibits pulmonary vasodilator responses in cats   总被引:5,自引:0,他引:5  
The effects of methylene blue on vascular tone and the responses to pressor and depressor substances were investigated in the constricted feline pulmonary vascular bed under conditions of controlled blood flow and constant left atrial pressure. When tone was elevated with U46619, intralobar injections of acetylcholine, bradykinin, nitroglycerin, isoproterenol, epinephrine, and 8-bromoguanosine-3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intralobar infusions of methylene blue elevated lobar arterial pressure without altering base-line left atrial or aortic pressure, heart rate, or cardiac output. When methylene blue was infused in concentrations that raised lobar arterial pressure to values similar to those attained during U46619 infusion, the pulmonary vasodilator responses to acetylcholine, bradykinin, and nitroglycerin were reduced significantly, whereas vasodilator responses to isoproterenol, epinephrine, and 8-bromo-cGMP were not altered. Moreover, the pressor responses to angiotensin II and BAY K 8644 during U46619 infusion and during methylene blue infusion were similar. The enhancing effects of methylene blue on vascular tone and inhibiting effects of this agent on responses to acetylcholine, bradykinin, and nitroglycerin were reversible. These responses returned to control value when tone was again increased with U46619, 30-45 min after the methylene blue infusion was terminated. The present data are consistent with the hypothesis that cGMP may play a role in the regulation of tone in the feline pulmonary vascular bed and in the mediation of vasodilator responses to the endothelium-dependent vasodilators, acetylcholine and bradykinin, and to nitrogen oxide-containing vasodilators such as nitroglycerin.  相似文献   

8.
Acetylcholine's effect on the distribution of vascular resistance and compliance in the canine pulmonary circulation was determined under control and elevated vascular tone by the arterial, venous, and double occlusion techniques in isolated blood-perfused dog lungs at both constant flow and constant pressure. Large and small blood vessel resistances and compliances were studied in lungs given concentrations of acetylcholine ranging from 2.0 ng/ml to 200 micrograms/ml. The results of this study indicate that acetylcholine dilates large arteries at low concentrations (less than or equal to 20 ng/ml) and constricts small and large veins at concentrations of at least 2 micrograms/ml. Characterization of acetylcholine's effects at constant pulmonary blood flow indicates that 1) large artery vasodilation may be endothelial-derived relaxing factor-mediated because the dilation is blocked with methylene blue; 2) a vasodilator of the arachidonic acid cascade (blocked by ibuprofen), probably prostacyclin, lessens acetylcholine's pressor effects; 3) when vascular tone was increased, acetylcholine's hemodynamic effects were attenuated; and 4) acetylcholine decreased middle compartment and large vessle compliance under control but not elevated vascular tone. Under constant pressure at control vascular tone acetylcholine increases resistance in all segments except the large artery, and at elevated vascular tone the pressor effects were enhanced, and large artery resistance was increased.  相似文献   

9.
Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat   总被引:1,自引:0,他引:1  
We investigated the effects of vasoactive intestinal peptide (VIP) in the feline pulmonary vascular bed under conditions of controlled pulmonary blood flow when pulmonary vascular tone was at base-line levels and when vascular resistance was elevated. Under base-line conditions, VIP caused small but significant reductions in lobar arterial pressure without affecting left atrial pressure. Decreases in lobar arterial pressure in response to VIP were greater and were dose related when lobar vascular resistance was increased by intralobar infusion of U 46619, a stable prostaglandin endoperoxide analogue. Acetylcholine and isoproterenol also caused significant decreases in lobar arterial pressure under base-line conditions, and responses to these agents were enhanced when lobar vascular tone was elevated. Moreover, when doses of these agents are expressed in nanomoles, acetylcholine and isoproterenol were more potent than VIP in decreasing lobar arterial pressure. Responses to VIP were longer in duration with a slower onset than were responses to acetylcholine or isoproterenol. Pulmonary vasodilator responses to VIP were unchanged by indomethacin, atropine, or propranolol. The present data demonstrate that VIP has vasodilator activity in the pulmonary vascular bed and that responses are dependent on the existing level of vasoconstrictor tone. These studies indicate that this peptide is less potent than acetylcholine or isoproterenol in dilating the feline pulmonary vascular bed and that responses to VIP are not dependent on a muscarinic or beta-adrenergic mechanism or release of a dilator prostaglandin.  相似文献   

10.
Sell M  Boldt W  Markwardt F 《Cell calcium》2002,32(3):105-120
The kinetics of the intracellular Ca2+ concentration ([Ca2+]i) of vascular smooth muscle cells (VSMCs) in rat small mesenteric arteries was investigated by confocal laser scanning microscopy using the fluorescent Ca2+ indicator fluo-3 AM. One micromole noradrenaline (NA) induced randomly distributed transient elevations of [Ca2+]i in several single VSMCs which were weakly temporally coupled. Higher NA concentrations of 3 or 10 microM, however, induced strongly synchronised [Ca2+]i oscillations in VSMCs. In preparations with intact endothelium, the synchronisation of [Ca2+]i signals was attenuated by acetylcholine (ACh) but augmented by the NO synthase antagonist L-NAME, pointing to a desynchronising effect of the endothelium even under basal conditions. In preparations with or without intact endothelium sodium nitroprusside (SNP) as well as the gap-junction uncoupler heptanol reversibly desynchronised the [Ca2+]i transients. The effect of ACh but not that of SNP was influenced by L-NAME. Propagated intracellular [Ca2+]i waves had a velocity of 25 microm/s. The phase shift of [Ca2+]i oscillations between single VSMCs were maximally 2s and independent of the distance of up to 90 microm between individual cells. Therefore, we consider intercellular [Ca2+]i waves to be too slow to account for the synchronisation of [Ca2+]i oscillations.We conclude that the coupling of [Ca2+]i signals in vascular smooth muscle cells is not constant but highly regulated by NA and by endothelium derived NO. Oscillations of vessel contraction at high sympathetic tone may be induced by synchronisation of [Ca2+]i transients of distinct VSMCs whereas endothelium derived NO inhibits vasomotion by desynchronising [Ca2+]i transients of single VSMCs.  相似文献   

11.
Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor potential canonical (TRPC) channels, in the present study we tested the hypothesis that increased vasomotion in hypertension is directly linked to increased TRPC expression. Using a small vessel myograph we observed significantly increased norepinephrine‐induced vasomotion in mesenteric arterioles from SHR compared to normotensive Wistar–Kyoto (WKY) rats. Using immunoblottings we obtained significantly increased expression of TRPC1, TRPC3 and TRPC5 in mesenteric arterioles from SHR compared to WKY, whereas TRPC4 and TRPC6 showed no differences. Norepinephrine‐induced vasomotion from SHR was significantly reduced in the presence of verapamil, SKF96365, 2‐aminoethoxydiphenylborane (2‐APB) or gadolinium. Pre‐incubation of mesenteric arterioles with anti‐TRPC1 and anti‐TRPC3 antibodies significantly reduced norepinephrine‐induced vasomotion and calcium influx. Control experiments with pre‐incubation of TRPC antibodies plus their respective antigenic peptide or in the presence of anti‐β‐actin antibodies or random immunoglobulins not related to TRPC channels showed no inhibitory effects of norepinephrine‐induced vasomotion and calcium influx. Administration of candesartan or telmisartan, but not amlodipine to SHR for 16 weeks significantly reduced either the expression of TRPC1, TRPC3 and TRPC5 as well as norepinephrine‐induced vasomotion in mesenteric arterioles. In conclusion we gave experimental evidence that the increased TRPC1, TRPC3 and TRPC5 expression in mesenteric arterioles from SHR causes increased vasomotion in hypertension.  相似文献   

12.
The vascular response to the muscarinic receptor agonist acetylcholine (ACh) in the presence of selected antagonists was examined in the isolated blood-perfused canine left lower lung lobe under conditions of normal (resting) and elevated vascular tone. At normal vascular tone, ACh (1-5 mumol) produced a dose-dependent increase in pulmonary arterial pressure (Ppa), total pulmonary vascular resistance (PVR), and downstream resistance (Rds) without altering upstream resistance (Rus). Pirenzepine (50 and 100 nM), the prototype M1-selective antagonist, and gallamine, an M2-selective antagonist, as well as atropine (50 nM) and secoverine (100 nM), nonselective antagonists, attenuated (P less than 0.05) the ACh-induced increase in Ppa and Rds. With elevated vascular tone induced by serotonin infusion, ACh produced a dose-dependent increase in Ppa in 19 of 25 lobes, although Rus decreased while Rds increased in all lobes. At high vascular tone, pirenzepine or gallamine attenuated the ACh-induced increase in Rds, whereas Rus was not affected. Secoverine and atropine antagonized ACh-induced increases in both Rds and Rus. The pA2 values (i.e., the negative log antagonist concentration requiring a doubling of ACh dose for an equivalent increase in Rds) for gallamine, pirenzepine, secoverine, and atropine were 6.1 +/- 0.1, 7.4 +/- 0.1, 8.3 +/- 0.2, and 10.2 +/- 0.3, respectively. These results suggest that 1) ACh increases PVR in the dog by constricting the venous segments (downstream) of the pulmonary circulation via activation of pulmonary vascular muscarinic receptors under conditions of both normal and elevated vascular tone, 2) both M1- and non-M1-muscarinic receptor subtypes appear to participate in mediating the ACh-induced increase in Rds, and 3) ACh moderately relaxes the upstream (arterial) vessels, especially under conditions of elevated tone.  相似文献   

13.
We compared in conscious rabbits, sedated using pentobarbital intravenous (i.v.) infusion (5 mg kg? 1 h? 1), the effect of a static magnetic field (SMF), generated by Nd2–Fe14–B magnets, on microcirculation during its 40 min local exposure to the microvascular network in cutaneous tissue [20 sham exposure and 20 SMF (0.25 T) exposure runs] or to sinocarotid baroreceptors [14 sham exposure and 14 SMF (0.35 T) exposure runs]. Mean femoral artery blood pressure (BP), heart rate (HR), arterial baroreflex sensitivity (BRS), assessed from HR and BP responses to i.v. bolus of nitroprusside and phenylephrine, and microcirculatory blood flow, using microphotoelectric plethysmography (MPPG), were simultaneously monitored. SMF significantly increased microcirculation on a 17.8% in microvascular and on a 23.3% in baroreceptor exposure series. In baroreceptor exposure series, SMF significantly decreased BP, increased heart rate variability, BRS and sodium nitroprusside (NO-donor) i.v. bolus microcirculatory vasodilatory effect. These suggest augmentation of the arterial baroreflex capacity support NO-dependent vasodilation, by increased sensitivity of vessels to NO, to be a new physiological mechanism of BP buffering and microcirculatory control. A significant positive correlation was also found between increase in BRS and in MPPG (r = 0.66, p < 0.009), indicating baroreflex participation in the regulation of the microcirculation and its enhancement after SMF exposure. Both direct and baroreflex-mediated approaches demonstrate SMF significant vasodilatory effect with potential clinical implication in macro- and microcirculatory disorders.  相似文献   

14.
The mechanisms leading to vasomotion in the presence of noradrenaline and inhibitors of the sarcoplasmic/endoplasmic reticulum calcium ATPase were investigated in isolated rat mesenteric small arteries. Isobaric diameter and isometric force were measured together with membrane potential in endothelial cells and smooth muscle cells (SMC). Calcium in the endothelial cells and SMC was imaged with confocal microscopy. In the presence of noradrenaline and cyclopiazonic acid, ryanodine-insensitive oscillations in tone were produced. The frequency was about 1 min(-1) and amplitude about 70% of the maximal tone. The amplitude was reduced by indomethacin and increased with L-NAME. Vasomotion was inhibited by nifedipine and by 40 mM potassium. The frequency was increased and amplitude decreased by removal of the endothelium and by application of charybdotoxin and apamin. The vasomotion was associated with in-phase oscillations of membrane potential in endothelial cells and SMC and oscillations of [Ca2+]i that were in near anti-phase. We suggest a working model for the generation of oscillation based on a membrane oscillator where ion channels in both endothelial cells and SMC interact via a current running between the two cell types through myoendothelial gap junctions, which sets up a near anti-phase oscillation of [Ca2+]i in the two cell types.  相似文献   

15.
The contribution of endothelin to resting pulmonary vascular tone and hypoxic pulmonary vasoconstriction in humans is unknown. We studied the hemodynamic effects of BQ-123, an endothelin type A receptor antagonist, on healthy volunteers exposed to normoxia and hypoxia. Hemodynamics were measured at room air and after 15 min of exposure to hypoxia (arterial PO(2) 99.8 +/- 1.8 and 49.4 +/- 0.4 mmHg, respectively). Measurements were then repeated in the presence of BQ-123. BQ-123 decreased pulmonary vascular resistance (PVR) 26% and systemic vascular resistance (SVR) 21%, whereas it increased cardiac output (CO) 22% (all P < 0.05). Hypoxia raised CO 28% and PVR 95%, whereas it reduced SVR 23% (all P < 0.01). During BQ-123 infusion, hypoxia increased CO 29% and PVR 97% and decreased SVR 22% (all P < 0.01). The pulmonary vasoconstrictive response to hypoxia was similar in the absence and presence of BQ-123 [P = not significant (NS)]. In vehicle-treated control subjects, hypoxic pulmonary vasoconstriction did not change with repeated exposure to hypoxia (P = NS). Endothelin contributes to basal pulmonary and systemic vascular tone during normoxia, but does not mediate the additional pulmonary vasoconstriction induced by acute hypoxia.  相似文献   

16.
Previously we found an opposite effect of artificial static magnetic field (SMF) and natural geomagnetic field (GMF) on arterial baroreceptors. A 0.35 T SMF increased baroreflex sensitivity (BRS), whereas GMF disturbance decreased BRS. Here, we investigated interrelated impacts on arterial baroreceptors of 0.35 T SMF, generated by Nd(2)-Fe(14)-B alloy magnets, GMF, and verapamil, a Ca(2+) channel blocking agent. We measured BRS in rabbits before and after local SMF exposure of sinocarotid baroreceptors or after simultaneous SMF and verapamil application, in conjunction with geomagnetic disturbance during actual experimental run (determined by K-index) and geomagnetic disturbance over the preceding 24 h of each experiment (A(k)-index). BRS was estimated from peak responses of mean arterial pressure (MAP) and heart rate, expressed as percentages of the resting values preceding each pair of pressure (phenylephrine) and depressor drug (nitroprusside) injections. Prior to verapamil and/or SMF application we found a significant positive correlation of K-index with MAP (t = 2.39, P =.021, n = 44), but negative with BRS (t = -4.60, P =.0003, n = 44), and found a negative correlation of A(k)-index with BRS (t = -2.7, P = 0.01, n = 44). SMF induced an increase in BRS (0.79 +/- 0.1 vs. 1.15 +/- 0.1 bpm%/mmHg%, initial value vs. SMF exposure, P <.0002, n = 26). Verapamil infusion blocked the SMF and GMF effect on BRS, indicating Ca(2+) channels as a possible site of both fields' impact. SMF and GMF probably affect baroreceptor sensory transduction, modulating baroreceptor membranes' Ca(2+) channel permeability.  相似文献   

17.
The effects of OKY-1581, a thromboxane synthesis inhibitor, on pulmonary vascular responses to arachidonic acid (AA) were investigated under baseline and elevated tone conditions in the intact chest cat. Under conditions of controlled blood flow at baseline tone, intralobar injections of AA increased lobar arterial pressure in a dose-related manner. These pressor responses were reduced by OKY-1581, and a small vasodilator response was unmasked. The administration of indomethacin to these same animals abolished all responses to AA. When baseline tone in the pulmonary vascular bed was elevated by infusion of U46619, intralobar injections of AA caused a biphasic change in lobar arterial pressure characterized by an initial increase followed by a secondary fall in pressure. Treatment with OKY-1581 attenuated the pressor component of the response and enhanced the depressor component of the response. All responses to AA at elevated tone were also blocked by indomethacin. Pressor responses to intralobar injections of U46619 were not altered by OKY-1581 or indomethacin and were similar under baseline and high pulmonary vascular tone conditions. The results of this study suggest that the pulmonary pressor response to AA in the cat is dependent in large part on the formation of TXA2 and also suggest that TXA2, PGI2, and vasoconstrictor prostaglandins (PGF2 alpha, PGD2, PGE2) are formed from AA in the cat lung.  相似文献   

18.
We investigated the combined effects of a moderate-intensity static magnetic field (SMF) and two different sympathetic agonists, an alpha(1)-adrenoceptor agonist, phenylephrine and a beta(1)-adrenoceptor agonist, dobutamine, which induced hypertension and different hemodynamics in Wistar rats. Five-week-old male rats were continuously exposed to the SMF intensity of 12 mT (B(max)) with the peak spatial gradient of 3 mT/mm for 10 weeks. A loop-shaped flexible rubber magnet was adjusted to fit snugly around the neck region of a rat (diameter-adjustable to an animal size). Sham exposure was performed using a dummy magnet. Six experimental groups of six animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip phenylephrine (1.0 microg/g) injection (PE); (4) SMF exposure with ip phenylephrine injection (SMF + PE); (5) sham exposure with ip dobutamine (4.0 microg/g) injection (DOB); (6) SMF exposure with ip dobutamine injection (SMF + DOB). Fifteen minutes after the injection of each agent, the first set of parameters, arterial blood pressure (BP) and heart rate (HR), the second set of parameters, skin blood flow (SBF) and skin blood velocity (SBV), or the third set of parameters, the number of rearing (exploratory behavior) responses and body weight was monitored. Each agent was administered three times a week for 10 weeks, and each set of parameters was monitored on different days, once a week. The dose of phenylephrine significantly increased BP and decreased HR, SBF, SBV, and the number of rearing responses in the PE group compared with those in the respective age-matched control group. The dose of dobutamine significantly increased BP and HR, increased SBF, SBV, and the number of rearing responses in the DOB group compared with those in the control group. Continuous neck exposure to the SMF alone for up to 10 weeks induced no significant changes in any of the measured cardiovascular and behavioral parameters. The SMF exposure for at least 2 weeks (1) significantly depressed phenylephrine effects on BP, SBF, SBV, and rearing activity (SMF + PE group vs. PE group); (2) significantly depressed dobutamine effects on BP, SBF, and SBV, and suppressed dobutamine-induced increase in the rearing activity (SMF + DOB group vs. DOB group). These results suggest that continuous neck exposure to 12 mT SMF for at least 2 weeks may depress or suppress sympathetic agonists-induced hypertension, hemodynamics, and behavioral changes by modulating sympathetic nerve activity.  相似文献   

19.
Static magnetic fields alter arteriolar tone in vivo   总被引:1,自引:0,他引:1  
This study was designed to directly quantify the effect of localized static magnetic field (SMF) exposure on the diameter of microvessels in adult rat skeletal muscle in vivo. Microvascular networks in the exteriorized rat spinotrapezius microvasculature were exposed to a localized, uniform 70 mT SMF for 15 min. Arteriolar vessel diameters were measured; and the extent of vessel contraction, microvascular tone, was calculated before exposure, immediately after exposure, and 15 and 30 min after removal of the field. A calculated value of high tone corresponds to vessels that are vasoconstricted and a calculated value of low tone refers to vessels that are vasodilated. Vessels with initial tone <15% showed an increasing trend in tone and, conversely, vessels with initial tone >15% showed a significant (P < 0.05) decrease in tone 15 and 30 min following application, respectively. Further classification of the data with regards to the initial vessel diameter demonstrated that vessels with initial diameters <30 microm and initial tone <15%, smaller diameter vessels that are initially vasodilated, showed significant (P < 0.05) increase in tone immediately, 15 and 30 min following SMF exposure. Additionally, <30 microm vessels with >15% initial tone, smaller diameter vessels that are initially vasoconstricted, demonstrated a significant (P < 0.05) decrease in tone 30 min after SMF exposure. Vessels with initial diameters >30 microm had no significant response to the SMF. These results imply that SMF exposure influences arteriolar diameters, and therefore microvascular tone, in a restorative fashion acting to normalize the tone to the median tone value of 15% following exposure. Because this response occurs primarily in the resistance arterioles, which significantly influence tissue perfusion, SMF application could be efficacious for the treatment of both ischemic and edematous tissue disorders involving compromised microvascular function.  相似文献   

20.
The capillary filtration coefficient (CFC) is assumed to reflect both microvascular hydraulic conductivity and the number of perfused capillaries at a given moment (precapillary sphincter activity). Estimation of hydraulic conductivity in vivo with the CFC method has therefore been performed under conditions of unchanged vascular tone and metabolic influence. There are studies, however, that did not show any change in CFC after changes in vascular tone and metabolic influence, and these studies indicate that CFC may not be influenced by alteration in the number of perfused capillaries. The present study reexamined to what extent CFC in a pressure-controlled preparation depends on the vascular tone and number of perfused capillaries by analyzing how CFC is influenced by 1) vasoconstriction, 2) increase in metabolic influence by decrease in arterial blood pressure, and 3) occlusion of precapillary microvessels by arterial infusion of microspheres. CFC was calculated from the filtration rate induced by a fixed decrease in tissue pressure. Vascular tone was increased in two steps by norepinephrine (n = 7) or angiotensin II (n = 6), causing a blood flow reduction from 7.2 +/- 0.8 to at most 2.7 +/- 0.2 ml x min(-1) x 100 g(-1) (P < 0.05). The decrease in arterial pressure reduced blood flow from 4.8 +/- 0.4 to 1.40 +/- 0.1 ml x min(-1) x 100 g(-1) (n = 6). Vascular resistance increased to 990 +/- 260% of control after the infusion of microspheres (n = 6). CFC was not significantly altered from control after any of the experimental interventions. We conclude that CFC under these conditions is independent of the vascular tone and number of perfused capillaries and that variation in CFC reflects variation in microvascular hydraulic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号