首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate (biliverdin(Fe)-HO-1), the immediate precursor of the final product, biliverdin, has been determined at a 2.4-A resolution. The electron density in the heme pocket clearly showed that the tetrapyrrole ring of heme is cleaved at the alpha-meso edge. Like the heme bound to HO-1, biliverdin-iron chelate is located between the distal and proximal helices, but its accommodation state seems to be less stable in light of the disordering of the solvent-exposed propionate and vinyl groups. The middle of the distal helix is shifted away from the center of the active site in biliverdin(Fe)-HO-1, increasing the size of the heme pocket. The hydrogen-bonding interaction between Glu-29 and Gln-38, considered to restrain the orientation of the proximal helix in the heme-HO-1 complex, was lost in biliverdin(Fe)-HO-1, leading to relaxation of the helix. Biliverdin has a distorted helical conformation; the lactam oxygen atom of its pyrrole ring-A interacted with Asp-140 through a hydrogen-bonding solvent network. Because of the absence of a distal water ligand, the iron atom is five-coordinated with His-25 and four pyrrole nitrogen atoms. The coordination geometry deviates considerably from a square pyramid, suggesting that the iron may be readily dissociated. We speculate that the opened conformation of the heme pocket facilitates sequential product release, first iron then biliverdin, and that because of biliverdin's increased flexibility, iron release triggers its slow dissociation.  相似文献   

2.
Crystal structures of the ferric and ferrous heme complexes of HmuO, a 24-kDa heme oxygenase of Corynebacterium diphtheriae, have been refined to 1.4 and 1.5 A resolution, respectively. The HmuO structures show that the heme group is closely sandwiched between the proximal and distal helices. The imidazole group of His-20 is the proximal heme ligand, which closely eclipses the beta- and delta-meso axis of the porphyrin ring. A long range hydrogen bonding network is present, connecting the iron-bound water ligand to the solvent water molecule. This enables proton transfer from the solvent to the catalytic site, where the oxygen activation occurs. In comparison to the ferric complex, the proximal and distal helices move closer to the heme plane in the ferrous complex. Together with the kinked distal helix, this movement leaves only the alpha-meso carbon atom accessible to the iron-bound dioxygen. The heme pocket architecture is responsible for stabilization of the ferric hydroperoxo-active intermediate by preventing premature heterolytic O-O bond cleavage. This allows the enzyme to oxygenate selectively at the alpha-meso carbon in HmuO catalysis.  相似文献   

3.
Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to biliverdin by utilizing O(2) and NADPH. HO (apoHO) was crystallized as twinned P3(2) with three molecules per asymmetric unit, and its crystal structure was determined at 2.55 A resolution. Structural comparison of apoHO and its complex with heme (HO-heme) showed three distinct differences. First, the A helix of the eight alpha-helices (A-H) in HO-heme, which includes the proximal ligand of heme (His25), is invisible in apoHO. In addition, the B helix, a portion of which builds the heme pocket, is shifted toward the heme pocket in apoHO. Second, Gln38 is shifted toward the position where the alpha-meso carbon of heme is located in HO-heme. Nepsilon of Gln38 is hydrogen-bonded to the carbonyl group of Glu29 located at the C-terminal side of the A helix in HO-heme, indicative that this hydrogen bond restrains the angle between the A and B helices in HO-heme. Third, the amide group of Gly143 in the F helix is directed outward from the heme pocket in apoHO, whereas it is directed toward the distal ligand of heme in HO-heme. This means that the F helix around Gly143 must change its conformation to accommodate heme binding. The apoHO structure has the characteristic that the helix on one side of the heme pocket fluctuates, whereas the rest of the structure is similar to that of HO-heme, as observed in such hemoproteins as myoglobin and cytochromes b(5) and b(562). These structural features of apoHO suggest that the orientation of the proximal helix and the position of His25 are fixed upon heme binding.  相似文献   

4.
HmuO, a heme oxygenase of Corynebacterium diphtheriae, catalyzes degradation of heme using the same mechanism as the mammalian enzyme. The oxy form of HmuO, the precursor of the catalytically active ferric hydroperoxo species, has been characterized by ligand binding kinetics, resonance Raman spectroscopy, and x-ray crystallography. The oxygen association and dissociation rate constants are 5 microm(-1) s(-1) and 0.22 s(-1), respectively, yielding an O(2) affinity of 21 microm(-1), which is approximately 20 times greater than that of mammalian myoglobins. However, the affinity of HmuO for CO is only 3-4-fold greater than that for mammalian myoglobins, implying the presence of strong hydrogen bonding interactions in the distal pocket of HmuO that preferentially favor O(2) binding. Resonance Raman spectra show that the Fe-O(2) vibrations are tightly coupled to porphyrin vibrations, indicating the highly bent Fe-O-O geometry that is characteristic of the oxy forms of heme oxygenases. In the crystal structure of the oxy form the Fe-O-O angle is 110 degrees, the O-O bond is pointed toward the heme alpha-meso-carbon by direct steric interactions with Gly-135 and Gly-139, and hydrogen bonds occur between the bound O(2) and the amide nitrogen of Gly-139 and a distal pocket water molecule, which is a part of an extended hydrogen bonding network that provides the solvent protons required for oxygen activation. In addition, the O-O bond is orthogonal to the plane of the proximal imidazole side chain, which facilitates hydroxylation of the porphyrin alpha-meso-carbon by preventing premature O-O bond cleavage.  相似文献   

5.
Sperm whale myoglobin (Mb) and soybean leghemoglobin (Lba) are two small, monomeric hemoglobins that share a common globin fold but differ widely in many other aspects. Lba has a much higher affinity for most ligands, and the two proteins use different distal and proximal heme pocket regulatory mechanisms to control ligand binding. Removal of the constraint provided by covalent attachment of the proximal histidine to the F-helices of these proteins decreases oxygen affinity in Lba and increases oxygen affinity in Mb, mainly because of changes in oxygen dissociation rate constants. Hence, Mb and Lba use covalent constraints in opposite ways to regulate ligand binding. Swapping the F-helices of the two proteins brings about similar effects, highlighting the importance of this helix in proximal heme pocket regulation of ligand binding. The F7 residue in Mb is capable of weaving a hydrogen-bonding network that holds the proximal histidine in a fixed orientation. On the contrary, the F7 residue in Lba lacks this property and allows the proximal histidine to assume a conformation favorable for higher ligand binding affinity. Geminate recombination studies indicate that heme iron reactivity on picosecond timescales is not the dominant cause for the effects observed in each mutation. Results also indicate that in Lba the proximal and distal pocket mutations probably influence ligand binding independently. These results are discussed in the context of current hypotheses for proximal heme pocket structure and function.  相似文献   

6.
Heme oxygenase (HO) catalyzes the oxidative degradation of heme utilizing molecular oxygen and reducing equivalents. In photosynthetic organisms, HO functions in the biosynthesis of such open-chain tetrapyrroles as phyto-chromobilin and phycobilins, which are involved in the signal transduction for light responses and light harvesting for photosynthesis, respectively. We have determined the first crystal structure of a HO-1 from a photosynthetic organism, Synechocystis sp. PCC 6803 (Syn HO-1), in complex with heme at 2.5 A resolution. Heme-Syn HO-1 shares a common folding with other heme-HOs. Although the heme pocket of heme-Syn HO-1 is, for the most part, similar to that of mammalian HO-1, they differ in such features as the flexibility of the distal helix and hydrophobicity. In addition, 2-propanol derived from the crystallization solution occupied the hydrophobic cavity, which is proposed to be a CO trapping site in rat HO-1 that suppresses product inhibition. Although Syn HO-1 and mammalian HO-1 are similar in overall structure and amino acid sequence (57% similarity vs. human HO-1), their molecular surfaces differ in charge distribution. The surfaces of the heme binding sides are both positively charged, but this patch of Syn HO-1 is narrow compared to that of mammalian HO-1. This feature is suited to the selective binding of ferredoxin, the physiological redox partner of Syn HO-1; the molecular size of ferredoxin is approximately 10 kDa whereas the size of NADPH-cytochrome P450 reductase, a reducing partner of mammalian HO-1, is approximately 77 kDa. A docking model of heme-Syn HO-1 and ferredoxin suggests indirect electron transfer from an iron-sulfur cluster in ferredoxin to the heme iron of heme-Syn HO-1.  相似文献   

7.
Heme oxygenase (HO) catalyzes the first step in the heme degradation pathway. The crystal structures of apo- and heme-bound truncated human HO-2 reveal a primarily alpha-helical architecture similar to that of human HO-1 and other known HOs. Proper orientation of heme in HO-2 is required for the regioselective oxidation of the alpha-mesocarbon. This is accomplished by interactions within the heme binding pocket, which is made up of two helices. The iron coordinating residue, His(45), resides on the proximal helix. The distal helix contains highly conserved glycine residues that allow the helix to flex and interact with the bound heme. Tyr(154), Lys(199), and Arg(203) orient the heme through direct interactions with the heme propionates. The rearrangements of side chains in heme-bound HO-2 compared with apoHO-2 further elucidate HO-2 heme interactions.  相似文献   

8.
Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.  相似文献   

9.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.  相似文献   

10.
Heme oxygenase oxidatively degrades heme to biliverdin resulting in the release of iron and CO through a process in which the heme participates both as a cofactor and substrate. One of the least understood steps in the heme degradation pathway is the conversion of verdoheme to biliverdin. In order to obtain a better understanding of this step we report the crystal structures of ferrous-verdoheme and, as a mimic for the oxy-verdoheme complex, ferrous-NO verdoheme in a complex with human HO-1 at 2.20 and 2.10 A, respectively. In both structures the verdoheme occupies the same binding location as heme in heme-HO-1, but rather than being ruffled verdoheme in both sets of structures is flat. Both structures are similar to their heme counterparts except for the distal helix and heme pocket solvent structure. In the ferrous-verdoheme structure the distal helix moves closer to the verdoheme, thus tightening the active site. NO binds to verdoheme in a similar bent conformation to that found in heme-HO-1. The bend angle in the verodoheme-NO structure places the terminal NO oxygen 1 A closer to the alpha-meso oxygen of verdoheme compared to the alpha-meso carbon on the heme-NO structure. A network of water molecules, which provide the required protons to activate the iron-oxy complex of heme-HO-1, is absent in both ferrous-verdoheme and the verdoheme-NO structure.  相似文献   

11.
The majority of the active site residues of cyanide-inhibited, substrate-bound human heme oxygenase have been assigned on the basis of two-dimensional NMR using the crystal structure of the water-ligated substrate complex as a guide (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). The proximal helix and the N-terminal portion of the distal helix are found to be identical to those in the crystal except that the heme for the major isomer ( approximately 75-80%) in solution is rotated 180 degrees about the alpha-gamma-meso axis relative to the unique orientation in the crystal. The central portion of the distal helix in solution is translated slightly over the heme toward the distal ligand, and a distal four-ring aromatic cluster has moved 1-2 A closer to the heme, which allows for strong hydrogen bonds between the hydroxyls of Tyr-58 and Tyr-137. These latter interactions are proposed to stabilize the closed pocket conducive to the high stereospecificity of the alpha-meso ring opening. The determination of the magnetic axes, for which the major axis is controlled by the Fe-CN orientation, reveals a approximately 20 degrees tilt of the distal ligand from the heme normal in the direction of the alpha-meso bridge, demonstrating that the close placement of the distal helix over the heme exerts control of stereospecificity by both blocking access to the beta, gamma, and delta-meso positions and tilting the axial ligand, a proposed peroxide, toward the alpha-meso position.  相似文献   

12.
Site-directed mutagenesis studies have shown that Asp140 in both human and rat heme oxygenase-1 is critical for enzyme activity. Here, we report the D140A mutant crystal structure in the Fe(III) and Fe(II) redox states as well as the Fe(II)-NO complex as a model for the Fe(II)-oxy complex. These structures are compared to the corresponding wild-type structures. The mutant and wild-type structures are very similar, except for the distal heme pocket solvent structure. In the Fe(III) D140A mutant one water molecule takes the place of the missing Asp140 carboxylate side-chain and a second water molecule, novel to the mutant, binds in the distal pocket. Upon reduction to the Fe(II) state, the distal helix running along one face of the heme moves closer to the heme in both the wild-type and mutant structures thus tightening the active site. NO binds to both the wild-type and mutant in a bent conformation that orients the NO O atom toward the alpha-meso heme carbon atom. A network of water molecules provides a H-bonded network to the NO ligand, suggesting a possible proton shuttle pathway required to activate dioxygen for catalysis. In the wild-type structure, Asp140 exhibits two conformations, suggesting a dynamic role for Asp140 in shuttling protons from bulk solvent via the water network to the iron-linked oxy complex. On the basis of these structures, we consider why the D140A mutant is inactive as a heme oxygenase but active as a peroxidase.  相似文献   

13.
Although soluble guanylyl cyclase (sGC) functions in an environment in which O(2), NO, and CO are potential ligands for its heme moiety, the enzyme displays a high affinity for only its physiological ligand, NO, but has a limited affinity for CO and no affinity for O(2). Recent studies of a truncated version of the sGC beta(1)-subunit containing the heme-binding domain (Boon, E. M., Huang, S H., and Marletta, M. A. (2005) Nat. Chem. Biol., 1, 53-59) showed that introduction of the hydrogen-bonding tyrosine into the distal heme pocket changes the ligand specificity of the heme moiety and results in an oxygen-binding sGC. The hypothesis that the absence of hydrogen-bonding residues in the distal heme pocket is sufficient to provide oxygen discrimination by sGC was put forward. We tested this hypothesis in a context of a complete sGC heterodimer containing both the intact alpha(1)- and beta(1)-subunits. We found that the I145Y substitution in the full-length beta-subunit of the sGC heterodimer did not produce an oxygen-binding enzyme. However, this substitution impeded the association of NO and destabilized the NO.heme complex. The tyrosine in the distal heme pocket also impeded both the binding and dissociation of the CO ligand. We propose that the mechanism of oxygen exclusion by sGC not only involves the lack of hydrogen bonding in the distal heme pocket, but also depends on structural elements from other domains of sGC.  相似文献   

14.
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.  相似文献   

15.
The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole “anchor” which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole “anchor” may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via “induced fit” to accommodate bulky substituents at the 4-position of the dioxolane ring.  相似文献   

16.
Vuletich DA  Falzone CJ  Lecomte JT 《Biochemistry》2006,45(47):14075-14084
The recombinant two-on-two hemoglobin from the cyanobacterium Synechoccocus sp. PCC 7002 (S7002 rHb) is a bishistidine hexacoordinate globin capable of forming a covalent cross-link between a heme vinyl and a histidine in the C-terminal helix (H helix). Of the two heme axial histidines, His46 (in the E helix, distal side) and His70 (in the F helix, proximal histidine), His46 is displaced by exogenous ligands. S7002 rHb can be readily prepared as an apoglobin (apo-rHb), a non-cross-linked hemichrome (ferric iron and histidine axial ligands, rHb-R), and a cross-linked hemichrome (rHb-A). To determine the effects of heme binding and subsequent cross-linking, apo-rHb, rHb-R, and rHb-A were subjected to thermal denaturation and 1H/2H exchange. Interpretation of the latter data was based on nuclear magnetic resonance assignments obtained with uniformly 15N- and 13C,15N-labeled proteins. Apo-rHb was found to contain a cooperative structural core, which was extended and stabilized by heme binding. Cross-linking resulted in further stabilization attributed mainly to an unfolded-state effect. Protection factors were higher at the cross-link site and near His70 in rHb-A than in rHb-R. In contrast, other regions became less resistant to exchange in rHb-A. These included portions of the B and E helices, which undergo large conformational changes upon exogenous ligand binding. Thus, the cross-link readjusted the dynamic properties of the heme pocket. 1H/2H exchange data also revealed that the B, G, and H helices formed a robust core regardless of the presence of the heme or cross-link. This motif likely encompasses the early folding nucleus of two-on-two globins.  相似文献   

17.
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.  相似文献   

18.
Indoleamine 2,3-dioxygenase is a heme enzyme that catalyzes the oxidative degradation of L-Trp and other indoleamines. We have used resonance Raman spectroscopy to characterize the heme environment of purified recombinant human indoleamine 2,3-dioxygenase (hIDO). In the absence of L-Trp, the spectrum of the Fe(3+) form displayed six-coordinate, mixed high and low spin character. Addition of L-Trp triggered a transition to predominantly low spin with two Fe-OH(-) stretching modes identified at 546 and 496 cm(-1), suggesting H-bonding between the NH group of the pyrrole ring of L-Trp and heme-bound OH(-). The distal pocket of Fe(3+) hIDO was explored further by an exogenous heme ligand, CN(-); again, binding of L-Trp introduced strong H-bonding and/or steric interactions to the heme-bound CN(-). On the other hand, the spectrum of Fe(2+) hIDO revealed a five-coordinate and high spin heme with or without L-Trp bound. The proximal Fe-His stretching mode, identified at 236 cm(-1), did not shift upon L-Trp addition, indicating that the proximal Fe-His bond strength is not affected by binding of the substrate. The high Fe-His stretching frequency suggests that Fe(2+) hIDO has a strong "peroxidase-like" Fe-His bond. Using CO as a structural probe for the distal environment of Fe(2+) hIDO revealed that binding of L-Trp in the distal pocket converted IDO to a peroxidase-like enzyme. Binding of L-Trp also caused conformational changes to the heme vinyl groups, which were independent of changes of the spin and coordination state of the heme iron. Together these data indicate that the strong proximal Fe-His bond and the strong H-bonding and/or steric interactions between l-Trp and dioxygen in the distal pocket are likely crucial for the enzymatic activity of hIDO.  相似文献   

19.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin. The crystal structure of human HO-1 in complex with heme reveals a novel helical structure with conserved glycines in the distal helix, providing flexibility to accommodate substrate binding and product release (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). To structurally understand the HO catalytic pathway in more detail, we have determined the crystal structure of human apo-HO-1 at 2.1 A and a higher resolution structure of human HO-1 in complex with heme at 1.5 A. Although the 1.5-A heme.HO-1 model confirms our initial analysis based on the 2.08-A model, the higher resolution structure has revealed important new details such as a solvent H-bonded network in the active site that may be important for catalysis. Because of the absence of the heme, the distal and proximal helices that bracket the heme plane in the holo structure move farther apart in the apo structure, thus increasing the size of the active-site pocket. Nevertheless, the relative positioning and conformation of critical catalytic residues remain unchanged in the apo structure compared with the holo structure, but an important solvent H-bonded network is missing in the apoenzyme. It thus appears that the binding of heme and a tightening of the structure around the heme stabilize the solvent H-bonded network required for proper catalysis.  相似文献   

20.
Neuroglobin (Ngb) is a newly discovered oxygen-binding heme protein that is primarily expressed in the brain of humans and other vertebrates. To characterize the structure/function relationships of this new heme protein, we have used resonance Raman spectroscopy to determine the structure of the heme environment in Ngb from mice. In the Fe(2+)CO complex, two conformations of the Fe-CO unit are present, one of which arises from an open conformation of the heme pocket in which the CO is not interacting with any nearby residue, and the other arises from a closed conformation where a positively charged residue near the CO group stabilizes the complex. For the Fe(2+)O(2) complex, we detect a single nu(Fe-OO) stretching mode at a frequency similar to that of oxymyoglobins and oxyhemoglobins of vertebrates (571 cm(-1)). Based on the Fe-C-O frequencies of the closed conformation of Ngb, a highly polar distal environment is indicated from which the O(2) off-rate is predicted to be lower than that of Mb. In the absence of exogenous ligands, a heme pocket residue coordinates to the heme iron, forming a six-coordinate complex, thereby predicting a low on-rate for exogenous ligands. These structural properties of the heme pocket of Ngb are discussed with respect to its proposed in vivo oxygen delivery function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号