首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the ferritin level 2-4- or 6-8-fold above that of the control, respectively. Treatment with the anti-human transferrin receptor antibody, OKT9 (which reduces the iron uptake by decreasing the number of transferrin receptors) lowers the ferritin level by approximately 70-80% with respect to the control. The fraction of total cell-associated 59Fe (given as a pulse via transferrin) that becomes ferritin bound is proportional to the actual ferritin level and is independent of the instantaneous amount of iron taken up. This has allowed us to establish a curve that correlates different levels of intracellular ferritin with corresponding percentages of incoming iron delivered to ferritin. Iron released from transferrin appears to distribute to ferritin according to a partition function; the entering load going into ferritin is set for a given ferritin level over a wide range of actual amounts of iron delivered.  相似文献   

2.
Iron metabolism in K562 erythroleukemic cells   总被引:7,自引:0,他引:7  
Iron delivery to K562 cells is enhanced by desferrioxamine through induction of transferrin receptors. Experiments were performed to further characterize this event with respect to iron metabolism and heme synthesis. In control cells, up to 85% of the iron taken up from iron-transferrin was incorporated into ferritin, 7% into heme, and the remainder into compartments not yet identified. In cells grown with desferrioxamine, net accumulation of intracellular desferrioxamine (14-fold) was observed and iron incorporation into ferritin and heme was inhibited by 86% and 75%, respectively. In contrast, complete inhibition of heme synthesis in cells grown with succinylacetone had no effect on transferrin binding or iron uptake. Exogenous hemin (30 microM) inhibited transferrin binding and iron uptake by 70% and heme synthesis by 90%. These effects were already evident after 2 h. Thus, although heme production could be reduced by desferrioxamine, succinylacetone, and hemin, cell iron uptake was enhanced only by the intracellular iron chelator. The effects of exogenous heme are probably unphysiologic and the greater inhibition of iron flow into heme can be explained by effects on early steps of heme synthesis. We conclude that in this cell model a chelatable intracellular iron pool rather than heme synthesis mediates regulation of iron uptake.  相似文献   

3.
Incubation of human erythroleukaemia K562 cells with Al-transferrin inhibited iron uptake from 59Fe-transferrin by about 80%. The inhibition was greater than that produced by a similar quantity of Fe-transferrin. Preincubation of cells for 6 h with either Al-transferrin or Fe-transferrin diminished the number of surface transferrin receptors by about 40% compared with cells preincubated with apo-transferrin. Al-transferrin did not compete significantly with Fe-transferrin for transferrin receptors and, when cells were preincubated for 15 min instead of 6 h, the inhibitory effect of Al-transferrin on receptor expression was lost. Both forms of transferrin also decreased the level of transferrin receptor mRNA by about 50%, suggesting a common regulatory mechanism. Aluminium citrate had no effect on iron uptake or transferrin-receptor expression. AlCl3 also had no effect on transferrin-receptor expression, but at high concentration it caused an increase in iron uptake by an unknown, possibly non-specific, mechanism. Neither Al-transferrin nor AlCl3 caused a significant change in cell proliferation. It is proposed that aluminium, when bound to transferrin, inhibits iron uptake partly by down-regulating transferrin-receptor expression and partly by interfering with intracellular release of iron from transferrin.  相似文献   

4.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

5.
We have demonstrated that iron controls hemoglobin (Hb) synthesis in erythroid differentiating K562 cells by enhancing the activity of a key enzyme of the Hb synthesis, δ-aminolevulinate synthase (ALAS). In the present study, we studied iron mobilization and the role of iron in erythroid differentiating cells by measuring the level of iron by means of high-performance liquid chromatography using electrochemical detection (HPLC–ED). After treatment of K562 cells with sodium butyrate, the expression of transferrin receptor (TfR) increased initially, followed by an increase in the levels of both total iron and Hb as well as the ALAS activity. However, no increase could be found in the levels of non-heme iron, low-molecular-mass iron (LMMFe) and ferritin. Addition of diferric transferrin (FeTf) enhanced both δ-aminolevulinic acid (ALA) and Hb synthesis. In contrast, addition of hemin elevated the levels of all iron species as well as the Hb synthesis but reduced the TfR expression and ALA contents in both butyrate treated and untreated cells. These results suggest that Hb synthesis is controlled by TfR expression, and that the ALA synthesis is suppressed by iron released from heme and/or Hb due to lowered expression of TfR.  相似文献   

6.
Transferrin and iron uptake by human lymphoblastoid and K-562 cells   总被引:2,自引:0,他引:2  
Two human lymphoblastoid cell lines and K-562 cells were found to take up radioiodinated transferrin and transferrin-bound iron in amounts comparable to reticulocytes. These cell lines were also shown to possess transferrin receptors whose numbers and affinity for transferrin were similar to those of reticulocytes. However, unlike reticulocytes, in which at least 90% of the iron taken up is incorporated into heme, in the lymphoblastoid and K-562 cells only around 10% of the incorporated iron is found in heme. In addition, in contrast to the hemoglobin synthesizing cells, excess heme does not inhibit the removal of iron from transferrin by the lymphoblastoid and K-562 cells, suggesting that only during erythroid differentiation do cells acquire a specific mechanism for removing iron from transferrin which is subject to feedback inhibition by heme.  相似文献   

7.
The murine macrophage-like cell line P388D1 has been used as a model to investigate whether iron acquired simultaneously from different sources (transferrin, lactoferrin, and ovotransferrin-anti-ovotransferrin immune complexes) is handled in the same way. P388D1 cells bound both lactoferrin and transferrin, but over a 6 h incubation period only the latter actually donated iron to the cells. When the cells were incubated with [55Fe]transferrin and [59Fe]ovotransferrin-anti-ovotransferrin immune complexes iron was acquired from both sources. However, there was a difference in the intracellular distribution of the two isotopes, proportionally more 55Fe entering haem compounds and less entering ferritin. When the cells were precultured in a low-iron serum-free medium almost no transferrin-iron was incorporated into ferritin, whereas the proportion of immune complex-derived iron incorporated into ferritin was unchanged. Lactoferrin enhanced the rate of cellular proliferation, as measured by [3H]thymidine incorporation, despite its inability to donate iron to the cells, suggesting a stimulatory effect independent of iron donation. In contrast immune complexes inhibited cell proliferation. These findings indicate that iron acquired from transferrin and iron acquired by scavenging mechanisms are handled differently, and suggest that more than one intracellular iron transit pool may exist.  相似文献   

8.
Retinal pigment epithelial cells, which form one aspect of the blood-retinal barrier, take up iron in association with transferrin by a typical receptor-mediated mechanism (Hunt et al., 1989. J. Cell Sci. 92:655-666). This iron is dissociated from transferrin in a low pH environment and uptake is sensitive to agents that inhibit endosomal acidification. The dissociated iron enters the cytoplasm as a low molecular weight (less than 10 kD) component and subsequently binds to ferritin. No evidence for recycling of iron in association with transferrin was found. Nevertheless, much of the iron that is taken up is recycled to the extracellular medium, primarily from the low molecular weight pool. This release of iron is not sensitive to inhibitors of energy production or of vesicular acidification but is increased up to a maximum of about 40% of the total 55Fe incorporated when cells are incubated with serum or the medium is changed. When a short loading time for 55Fe from 55Fe-transferrin is used (i.e., when the low molecular weight pool is proportionately larger), a much larger fraction of the cell-associated radiolabel is released than when longer loading times are used. The data suggest that a releasable intracellular iron pool is in equilibrium with the externalized material. The released iron may be separated into a high and a low molecular weight component. The former is similar on polyacrylamide gel electrophoresis to ferritin although it cannot be immune precipitated by anti-ferritin antibodies. The low molecular weight 55Fe which is heterogeneous in nature can be bound by external apo-transferrin and may represent a form that can be taken up by cells beyond the blood-retinal barrier.  相似文献   

9.
10.
Transferrin bound by isolated rat hepatocytes is rapidly endocytosed and enters a compartment of low density. Little was found associated with the lysosomes, even though the protein was subsequently lost from the cells. Iron entering the cells on transferrin was subsequently found in a number of intracellular components: transferrin, haem, ferritin and a residual fraction. After 2 h incubation with 59Fe-transferrin almost 70% of the iron was in ferritin, and this proportion increased to 80% during a 'chase' experiment. Residual iron, because of its rapid increase at the start of the incubation and its decline during the 'chase', probably represents an intracellular transit pool, which at steady state was present at 23 pg/10(6) cells.  相似文献   

11.
Acquisition of iron from transferrin regulates reticulocyte heme synthesis   总被引:6,自引:0,他引:6  
Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59Fe from [59Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [59Fe]transferrin. Also, Fe-SIH stimulates [2-14C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59Fe incorporation into heme from either [59Fe]transferrin or [59Fe]SIH but does reverse the inhibition of 59Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.  相似文献   

12.
Ferritin iron kinetics and protein turnover in K562 cells   总被引:4,自引:0,他引:4  
The binding, incorporation, and release of iron by ferritin were investigated in K562 cells using both pulse-chase and long term decay studies with 59Fe-transferrin as the labeled iron source. After a 20-min pulse of labeled transferrin, 60% of the 59Fe was bound by ferritin with the proportion increasing to 70% by 4 h. This initial binding was reduced to 35% when the cells were exposed to the chelator desferrioxamine (5 mM) for an additional 30 min. By 4 h the association of 59Fe with ferritin was unaffected by the presence of the chelator, and levels of 59Fe-ferritin were identical to those in control cells (70%). Between 4-10h there was a parallel decline in 59Fe-ferritin in both control and desferrioxamine-treated cells. When incoming iron was bound by ferritin it was, therefore, initially chelatable but with time progressed to a further, nonchelatable compartment. In turnover studies where ferritin was preloaded with 59Fe by overnight incubation, 50% of the label was released from the protein by 18 h, contrasting with a t 1/2 for cellular iron release of approximately 70 h. The half-time of 59Fe release from ferritin was accelerated to 11 h by the presence of desferrioxamine. The half-time for ferritin protein turnover determined by [35S]methionine labeling was approximately 12 h in the presence or absence of the chelator. Thus, when the reassociation of iron with ferritin was prevented by the exogenous chelator there was a concordant decay of both protein and iron moieties. The direct involvement of lysosomes in this turnover was demonstrated by the use of the inhibitors leupeptin and methylamine which stabilized both 59Fe (t 1/2 = 24 h) and 35S (t 1/2 = 25.6 h) labels. We conclude that in this cell type the predominant mechanism by which iron is released from ferritin is through the constitutive degradation of the protein by lysosomes.  相似文献   

13.
Human melanoma and rat hepatoma cells cultured in the presence of low concentrations (2.5 microM) of low-molecular-weight iron (Fe) chelates and Fe-transferrin complexes have been studied with 57Fe M?ssbauer spectroscopy. The spectra show that holoferritin is only a minor fraction of the total iron present in the cells. The major form of Fe was in a low-spin state unlike the high-spin Fe(III) found in ferritin. Only about 10% of the Fe could be attributed to ferritin. In addition, the hepatoma cells had a high-spin Fe(II) spectral component which made up about 20% of the Fe present.  相似文献   

14.
Abstract: Both iron and the major iron-binding protein ferritin are enriched in oligodendrocytes compared with astrocytes and neurons, but their functional role remains to be determined. Progressive hypoxia dramatically induces the synthesis of ferritin in both neonatal rat oligodendrocytes and a human oligodendroglioma cell line. We now report that the release of iron from either transferrin or ferritin-bound iron, after a decrease in intracellular pH, also leads to the induction of ferritin synthesis. The hypoxic induction of ferritin synthesis can be blocked either with iron chelators (deferoxamine or phenanthroline) or by preventing intracellular acidification (which is required for the release of transferrin-bound iron) with weak base treatment (ammonium chloride and amantadine). Two sources of exogenous iron (hemin and ferric ammonium citrate) were able to stimulate ferritin synthesis in both oligodendrocytes and HOG in the absence of hypoxia. This was not additive to the hypoxic stimulation, suggesting a common mechanism. We also show that ferritin induction may require intracellular free radical formation because hypoxia-mediated ferritin synthesis can be further enhanced by cotreatment with hydrogen peroxide. This in turn was blocked by the addition of exogenous catalase to the culture medium. Our data suggest that disruption of intracellular free iron homeostasis is an early event in hypoxic oligodendrocytes and that ferritin may serve as an iron sequestrator and antioxidant to protect cells from subsequent iron-catalyzed lipid peroxidation injury.  相似文献   

15.
Iron transfer from transferrin to ferritin mediated by pyrophosphate   总被引:1,自引:0,他引:1  
There is no significant iron exchange from transferrin to ferritin in the absence of reducing and chelating agents. Pyrophosphate can release iron from transferrin and can be isolated as a ferric pyrophosphate complex by ion exchange chromatography. We have established that pyrophosphate alone can mediate iron exchange from transferrin to ferritin. Under these conditions, iron is incorporated directly into ferritin as Fe(III).  相似文献   

16.
Uptake of 59Fe as well as 125I-labelled Fe-transferrin into HeLa cells points to the existence of a limited number of specific binding sites. This is in contrast to hepatocytes and hepatoma cells (Hep G2) where metal uptake from transferrin is very low, not saturable and cannot be prevented by an excess of the protein. Iron uptake into these cells is much higher from the citrate complex. The same is true for plutonium uptake into rat hepatocytes, while the uptake of this metal into Hep G2 cells is very small regardless of the ligand. In contrast to iron, plutonium presented as citrate is taken up into HeLa cells much better than plutonium presented as transferrin. The uptake of both metals from the citrate complex requires a high activation energy and can be prevented only by inhibition of oxidative phosphorylation. Other processes such as endocytosis, intactness of microtubuli, assembly of microfilaments or pH of the lysosomes do not seem to be of importance. Metal uptake from the citrate complex can be prevented only by the presence of other chelating agents and/or by transferrin. It can be assumed, therefore, that the metals react directly with constituents of the cell membrane, a process in which chelating agents can successfully compete if they form strong enough complexes with the metals.  相似文献   

17.
To investigate the regulation mechanism of the uptake of iron and heme iron by the cells and intracellular utilization of iron, we examined the interaction between iron uptake from transferrin and hemopexin-mediated uptake of heme by human leukemic U937 cells or HeLa cells. U937 cells exhibited about 40,000 hemopexin receptors/cell with a dissociation constant (Kd) of 1 nM. Heme bound in hemopexin was taken up by U937 cells or HeLa cells in a receptor-mediated manner. Treatment of both species of cells with hemopexin led to a rapid decrease in iron uptake from transferrin in a hemopexin dose-dependent manner, and the decrease seen in case of treatment with hemin was less than that seen with hemopexin. The decrease of iron uptake by hemopexin contributed to a decrease in cell surface transferrin receptors on hemopexin-treated cells. Immunoblot analysis of the transferrin receptors revealed that the cellular level of receptors in U937 cells did not vary during an 8-h incubation with hemopexin although the number of surface receptors as well as iron uptake decreased within the 2-h incubation. After 4 h of incubation of the cells with hemopexin, a decrease of the synthesis of the receptors occurred. Thus, the down-regulation of transferrin receptors by hemopexin can be attributed to at least two mechanisms. One is a rapid redistribution of the surface receptor into the interior of the cells, and the other is a decrease in the biosynthesis of the receptor. 59Fe from the internalized heme rapidly appeared in non-heme iron (ferritin) coincidently with the induction of heme oxygenase. The results suggest that iron released from heme down-regulates the expression of the transferrin receptors and iron uptake.  相似文献   

18.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

19.
Iron distribution in subcellular fractions was investigated at different times after a single cohort of 59Fe-125 I-labeled transferrin (Tf) endocytosis in K562 cells. Cell homogenates prepared by hypotonic lysis and deoxyribonuclease (DNAase) treatment were fractionated on Percoll density gradients. Iron-containing components in the postmitochondrial supernatant were further fractionated according to their molecular weight using gel chromatography and membrane filtration. In the initial phases of endocytosis, both iron and Tf were found in the light vesicular fraction. After 3 min the labels diverged, with iron appearing in the postmitochondrial supernatant and Tf in the heavy fraction containing mitochondria, lysosomes and nuclei. Iron released from Tf-containing vesicles appeared both in low- and high-molecular-weight fractions in the postmitochondrial supernatant. After 5 min of endocytosis 59Fe activity in the low-molecular-weight fraction remained constant and 59Fe accumulated in a high-molecular-weight fraction susceptible to desferrioxamine chelation. After 10 min, 59Fe radioactivity in this fraction decreased and a majority of cytosolic 59Fe was found in ferritin. These results do not support the concept of the cytosolic low-molecular-weight iron pool as a kinetic intermediate between transferrin and ferritin iron in K562 cells.  相似文献   

20.
The pivotal role of ferritin in cellular iron homeostasis   总被引:2,自引:0,他引:2  
Iron delivered by transferrin to the interior of the cell is in part utilized in biosynthetic processes and in part incorporated into ferritin, the major iron storage protein. The intracellular ferritin concentration is directly correlated to and determined by the extent of iron supply to the cell. Intracellular partitioning of iron to ferritin is suggested as forming the basis of cellular iron homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号