首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The YMNM motif that exists in the CD28 cytoplasmic domain is known as a binding site for phosphatidylinositol 3-kinase and Grb-2 and is considered to be important for CD28-mediated costimulation. To address the role of the YMNM motif in CD28 cosignaling in primary T cells, we generated transgenic mice on a CD28 null background that express a CD28 mutant lacking binding ability to phosphatidylinositol 3-kinase and Grb-2. After anti-CD3 and anti-CD28 Ab stimulation in vitro, the initial proliferative response and IL-2 secretion in CD28 Y189F transgenic T cells were severely compromised, while later responses were intact. In contrast to anti-CD3 and anti-CD28 Ab stimulation, PMA and anti-CD28 Ab stimulation failed to induce IL-2 production from CD28 Y189F transgenic T cells at any time point. Using the graft-vs-host reaction system, we assessed the role of the YMNM motif for CD28-mediated costimulation in vivo and found that CD28 Y189F transgenic spleen cells failed to engraft and could not induce acute graft-vs-host reaction. Together, these results suggest that the membrane-proximal tyrosine of CD28 is required for costimulation in vivo. Furthermore, these results indicate that the results from in vitro assays of CD28-mediated costimulation may not always correlate with T cell activation in vivo.  相似文献   

2.
In this study, we examined in vitro the role of CTLA-4 costimulation in the polarization of naive CD4+ T cells toward the Th1 subset. When CTLA-4 costimulation was blocked by the inclusion of anti-CTLA-4 Fab in cultures during priming of naive CD4+ T cells with anti-CD3 in the presence of splenic adherent cells, they were polarized toward the Th2 subset. Conversely, the engagement of CTLA-4 with immobilized anti-CTLA-4 or with CD80-P815 cells polarized naive CD4+ T cells costimulated with anti-CD3 and anti-CD28 toward the Th1 subset. The CTLA-4 costimulation during priming augmented TGF-beta1 mRNA accumulation in naive CD4+ T cells, and the inclusion of anti-TGF-beta in cultures for priming suppressed the effect of CTLA-4 costimulation on the Th1 polarization. The addition of low doses of TGF-beta1 in cultures for priming of naive CD4+ T cells enhanced the production of Th1 cytokines upon secondary stimulation, although Th2 cytokine production was not affected by the doses of TGF-beta1. The CTLA-4 costimulation was also shown to suppress IL-4 production of naive CD4+ T cells upon priming. These results indicate that the costimulation against CTLA-4 drives polarization of naive CD4+ T cells toward the Th1 subset independent of IL-12 through, at least in part, the enhancement of TGF-beta1 production, and it also hampers Th2 subset differentiation by affecting IL-4 production of naive CD4+ T cells.  相似文献   

3.
4.
5.
Previous studies have demonstrated that naive splenic mouse T cells express no or only very low levels of the delta-type opioid receptor (delta OR), but stimulation of mouse splenocytes with Con A results in induction of delta OR mRNA and protein. In this report we have shown that stimulation of highly purified populations of naive mouse T cells with anti-CD3 mAb alone results in T cell activation, as evidenced by sustained IL-2 secretion and cell proliferation, but fails to elicit delta OR expression. However, delta OR expression is induced by costimulation of these very pure T cells with anti-CD3 and anti-CD28 mAbs. The delta OR induction by anti-CD3 and anti-CD28 costimulation was completely blocked by inhibition of phosphatidylinositol 3-kinase with wortmannin. Because phosphatidylinositol 3-kinase activation in T cells is linked to costimulation, these results suggest that induction of delta OR expression during T cell activation is strictly dependent on costimulation. It also appears that costimulatory receptors other than CD28 can provide the signaling required for delta OR expression because delta OR mRNA was induced by Con A stimulation of splenocytes from CD28-deficient mice.  相似文献   

6.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

7.
BACKGROUND: Our laboratory has previously shown that adoptive transfer of in vitro-expanded autologous purified polyclonal CD4(+) T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo. METHODS: As CD4(+) T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4(+) T-cell expansion, survival and delineate the phenotype of these expanded CD4(+) T cells to be linked to maximal clinical benefit. RESULTS AND CONCLUSIONS: The results showed that whereas anti-monkey CD3gamma/epsilon was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3epsilon cross reacting antibodies failed to induce proliferation of macaque CD4(+) T cells. Among co-stimulatory signals, anti-CD28 stimulation was consistently superior to anti-4-1BB, CD27 or ICOS while the use of anti-CD154 failed to deliver a detectable proliferation signal. Increasing the relative anti-CD28 co-stimulatory signal relative to anti-CD3 provided a modest enhancement of expansion. Additional strategies for optimization included attempts to neutralize free radicals, enhancement of glucose uptake by T cells or addition of T-cell stimulatory cytokines. However, none of these strategies provided any detectable proliferative advantage. Addition of 10 autologous irradiated feeder cells/expanding T cell provided some enhancement of expansion; however, given the high numbers of T cell needed, this approach was deemed impractical and costly, and lower ratios of feeder to expanding T cells failed to provide such benefit. The most critical parameter for efficient expansion of purified CD4(+) T cells from multiple monkeys was the optimization of space and culture conditions at culture inception. Finally, anti-CD3/28-expanded CD4(+) T cells uniformly exhibited a central memory phenotype, absence of CCR5 expression, marked CXCR4 expression in vitro, low levels of caspase 3 but also of Bcl-2 expression.  相似文献   

8.
Altered T cell function in systemic lupus erythematosus (SLE) is determined by various molecular and cellular abnormalities, including increased IL-17 production. Recent evidence suggests a crucial role for signaling lymphocyte activation molecules (SLAMs) in the expression of autoimmunity. In this study, we demonstrate that SLAMF3 and SLAMF6 expression is increased on the surface of SLE T cells compared with normal cells. SLAM coengagement with CD3 under Th17 polarizing conditions results in increased IL-17 production. SLAMF3 and SLAMF6 T cell surface expression and IL-17 levels significantly correlate with disease activity in SLE patients. Both naive and memory CD4(+) T cells produce more IL-17 in response to SLAM costimulation as compared with CD28 costimulation. In naive CD4(+) cells, IL-17 production after CD28 costimulation peaks on day 3, whereas costimulation with anti-SLAMF3 and anti-SLAMF6 Abs results in a prolonged and yet increasing production during 6 d. Unlike costimulation with anti-CD28, SLAM costimulation requires the presence of the adaptor molecule SLAM-associated protein. Thus, engagement of SLAMF3 and SLAMF6 along with Ag-mediated CD3/TCR stimulation represents an important source of IL-17 production, and disruption of this interaction with decoy receptors or blocking Abs should mitigate disease expression in SLE and other autoimmune conditions.  相似文献   

9.
10.
CD4(+)CD25(+) regulatory T (Treg) cells naturally occur in mice and humans, and similar Treg cells can be induced in vivo and in vitro. However, the molecular mechanisms that mediate the generation of these Treg cell populations remain unknown. We previously described anti-4C8 mAbs that inhibit the postadhesive transendothelial migration of T cells through human endothelial cell monolayers. We demonstrate in this work that Treg cells are induced by costimulation of CD4(+) T cells with anti-CD3 plus anti-4C8. The costimulation induced full activation of CD4(+) T cells with high levels of IL-2 production and cellular expansion that were comparable to those obtained on costimulation by CD28. However, upon restimulation, 4C8-costimulated cells produced high levels of IL-10 but no IL-2 or IL-4, and maintained high expression levels of CD25 and intracellular CD152, as compared to CD28-costimulated cells. The former cells showed hyporesponsiveness to anti-CD3 stimulation and suppressed the activation of bystander T cells depending on cell contact but not IL-10 or TGF-beta. The suppressor cells developed from CD4(+)CD25(-)CD45RO(+) cells. The results suggest that 4C8 costimulation induces the generation of Treg cells that share phenotypic and functional features with CD4(+)CD25(+) T cells, and that CD25(-) memory T cells may differentiate into certain Treg cell subsets in the periphery.  相似文献   

11.
IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells   总被引:6,自引:0,他引:6  
The cellular and humoral immune system is critically dependent upon CD40-CD154 (CD40 ligand) interactions between CD40 expressed on B cells, macrophages, and dendritic cells, and CD154 expressed primarily on CD4 T cells. Previous studies have shown that CD154 is transiently expressed on CD4 T cells after T cell receptor engagement in vitro. However, we found that stimulation of PBLs with maximal CD28 costimulation, using beads coupled to Abs against CD3 and CD28, led to a very prolonged expression of CD154 on CD4 cells (>4 days) that was dependent upon autocrine IL-2 production. Previously activated CD4 T cells could respond to IL-2, or the related cytokine IL-15, by de novo CD154 production and expression without requiring an additional signal from CD3 and CD28. These results provide evidence that CD28 costimulation of CD4 T cells, through autocrine IL-2 production, maintains high levels of CD154 expression. This has significant impact on our understanding of the acquired immune response and may provide insight concerning the mechanisms underlying several immunological diseases.  相似文献   

12.
Recent studies suggest that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays a critical role in the maintenance of self-tolerance. Using T cell-specific PTEN knockout mice (PTENDeltaT), we have identified a novel mechanism by which PTEN regulates T cell tolerance. We found that TCR stimulation alone, without CD28 costimulation, is sufficient to induce hyperactivation of the PI3K pathway, which leads to enhanced IL-2 production by naive PTENDeltaT T cells. Importantly, as a result of this increased response to TCR stimulation, PTENDeltaT CD4(+) T cells no longer require CD28 costimulation for in vitro or in vivo expansion. In fact, unlike wild-type T cells, PTENDeltaT CD4(+) T cells are not anergized by delivery of TCR stimulation alone. These data suggest that by negatively regulating TCR signals, PTEN imposes a requirement for CD28 costimulation, thus defining a novel mechanism for its role in self-tolerance.  相似文献   

13.
Optimal CD4+ T cell activation requires the cooperation of multiple signaling pathways coupled to the TCR-CD3 complex and to the CD28 costimulatory molecule. In this study, we have investigated the expression of surface CXC chemokine receptor 4 (CXCR4) in enriched populations of CD4+ T PBL, stimulated with anti-CD3 and anti-CD28 mAbs, immobilized on plastic. Anti-CD3 alone induced a progressive down-regulation of surface CXCR4, accompanied by a significant decline in the entry of the HXB2 T cell line-tropic (X4-tropic) HIV-1 clone in CD4+ T cells. Of note, this effect was strictly dependent on the presence in culture of CD14+ monocytes. On the other hand, anti-CD28 alone induced a small but reproducible increase in the expression of surface CXCR4 as well as in the entry of HXB2 HIV-1 clone in resting CD4+ T cells. When the two mAbs were used in combination, anti-CD28 potently synergized with anti-CD3 in inducing the expression of CD69 activation marker and stimulating the proliferation of CD4+ T cells. On the other hand, anti-CD28 counteracted the CXCR4 down-modulation induced by anti-CD3. The latter effect was particularly evident when anti-CD28 was associated to suboptimal concentrations of anti-CD3. Because CXCR4 is the major coreceptor for the highly cytopathic X4-tropic HIV-1 strains, which preferentially replicate in proliferating CD4+ T cells, the ability of anti-CD28 to up-regulate the surface expression of CXCR4 in both resting and activated CD4+ T cells provides one relevant mechanism for the progression of HIV-1 disease.  相似文献   

14.
The capacity of the monoclonal antibodies (Mab) 64.1 and OKT3 directed at CD3 molecules to induce T4 cell proliferation and interleukin 2 (IL 2) production was examined. Each was tested in soluble form or was immobilized by adhering it to the wells of plastic microtiter wells. Soluble anti-CD3 did not induce proliferation of accessory cell (AC)-depleted T4 cells. In contrast, immobilized anti-CD3 induced T4 cell IL 2 production and proliferation in the complete absence of AC. When T4 cells were stimulated with high density immobilized anti-CD3, responses did not require AC, IL 2, or Mab directed at the Tp44 molecule (9.3). In contrast, responses stimulated by lower densities of immobilized anti-CD3 were enhanced by IL 2, AC, and 9.3, and with even lower densities of immobilized anti-CD3 proliferation, required these additional signals. A variety of other immobilized Mab directed at T cell surface proteins including class I major histocompatibility complex encoded gene products, CD2, CD5, 4F2, and Tp44, did not induce proliferation even in the presence of IL 2. Anti-CD4 Mab (66.1) inhibited immobilized anti-CD3-stimulated T4 cell responses, with a greater degree of inhibition noted when lower densities of immobilized anti-CD3 were used to stimulate T4 cells. The data demonstrate that stimulation of T4 cells by anti-CD3 is completely AC independent when the antibody is immobilized onto a surface. Furthermore, the results indicate that maximal stimulation requires multiple interactions with anti-CD3 without internalization of the CD3 molecule. The observation that additional signals are required to support T4 cell proliferation when the density of immobilized anti-CD3 is diminished suggests that these are necessary only when insufficient interactions with the CD3 molecule have occurred to transmit a maximal activation signal to the cell. Finally, the results indicate that anti-CD4 provides a direct inhibitory signal to the T4 cell, the effect of which is inversely proportional to the intensity of the activation signal.  相似文献   

15.
16.
The TNF-like cytokine TL1A augments IFN-gamma production by anti-CD3 plus anti-CD28 and IL-12/IL-18-stimulated peripheral blood (PB) T cells. However, only a small subset of PB T cells respond to TL1A stimulation with IFN-gamma production. PB CCR9+ T cells represent a small subset of circulating T cells with mucosal T cell characteristics and a Th1/Tr1 cytokine profile. In the current study, we show that TL1A enhanced IFN-gamma production by TCR- or CD2/CD28-stimulated CCR9(+)CD4+ PB T cells. However, TL1A had the most pronounced effect on augmenting IFN-gamma production by IL-12/IL-18-primed CCR9(+)CD4+ PB T cells. TL1A enhanced both the percentage and the mean fluorescence intensity of IFN-gamma in CCR9(+)CD4+ T cells as assessed by intracellular cytokine staining. IL-12 plus IL-18 up-regulated DR3 expression in CCR9(+)CD4+ T cells but had negligible effect on CCR9(-)CD4+ T cells. CCR9(+)CD4+ T cells isolated from the small intestine showed a 37- to 105-fold enhancement of IFN-gamma production when TL1A was added to the IL-12/IL18 cytokine combination. Cell membrane-expressed TL1A was preferentially expressed in CCR9(+)CD4+ PB T cells, and a blocking anti-TL1A mAb inhibited IFN-gamma production by cytokine-primed CCR9(+)CD4+ T cells by approximately 50%. Our data show that the TL1A/DR3 pathway plays a dominant role in the ultimate level of cytokine-induced IFN-gamma production by CCR9+ mucosal and gut-homing PB T cells and could play an important role in Th1-mediated intestinal diseases, such as Crohn's disease, where increased expression of IL-12, IL-18, TL1A, and DR3 converge in the inflamed intestinal mucosa.  相似文献   

17.
Optimal T cell activation requires signaling through the TCR and CD28 costimulatory receptor. CD28 costimulation is believed to set the threshold for T cell activation. Recently, Cbl-b, a ubiquitin ligase, has been shown to negatively regulate CD28-dependent T cell activation. In this report, we show that CD28 costimulation selectively induces greater ubiquitination and degradation of Cbl-b in wild-type T cells than CD3 stimulation alone, and TCR-induced Cbl-b ubiquitination and degradation are significantly reduced in CD28-deficient T cells. Stimulation of CD28-deficient T cells with higher doses of anti-CD3 results in increased ubiquitination of Cbl-b, which correlates with enhanced T cell responses. Our results demonstrate that CD28 costimulation regulates the threshold for T cell activation, at least in part, by promoting Cbl-b ubiquitination and degradation.  相似文献   

18.
Large scale T-cell expansion and efficient gene transduction are required for adoptive T-cell gene therapy. Based on our previous observations, human peripheral blood mononuclear cells (PBMCs) can be expanded efficiently while conserving a na?ve phenotype by stimulating with both recombinant human fibronectin fragment (CH-296) and anti-CD3 monoclonal antibodies. In this article, we explored the possibility of using this co-stimulation method to generate engineered T cells using lentiviral vector. Human PBMCs were stimulated with anti-CD3 together with immobilized CH-296 or anti-CD28 antibody as well as anti-CD3/anti-CD28 conjugated beads and transduced with lentiviral vector simultaneously. Co-stimulation with CH-296 gave superior transduction efficiency than with anti-CD28. Next, PBMCs were stimulated and transduced with anti-CD3/CH-296 or with anti-CD3/CD28 beads. T-cell expansion, gene transfer efficiencies and immunophenotypes were analysed. Stimulation with anti-CD3/CH-296 resulted in more than 10-times higher cell expansion and higher gene transfer efficiency with conservation of the na?ve phenotype compared with anti-CD3/CD28 stimulation method. Thus, lentiviral transduction with anti-CD3/CH-296 co-stimulation is an efficient way to generate large numbers of genetically modified T cells and may be suitable for many gene therapy protocols that use adoptive T-cell transfer therapy.  相似文献   

19.
IL-12 was recently shown to induce CCR5 on TCR-triggered mouse T cells. Considering that STAT4 is the most critical of IL-12 signaling molecules, this study investigated the role for STAT4 in the induction of CCR5 expression. IL-12R was induced by stimulation with anti-CD3 plus anti-CD28 mAb similarly on T cells from wild-type (WT) and STAT4-deficient (STAT4(-/-)) mice, but the levels of IL-12R induced on IFN-gamma-deficient (IFN-gamma(-/-)) T cells were lower compared with WT T cells. Exposure of TCR-triggered WT T cells to IL-12 induced CCR5 expression. In contrast, TCR-triggered STAT4(-/-) T cells failed to express CCR5 in response to IL-12. IL-12 stimulation induced detectable albeit reduced levels of CCR5 expression on IFN-gamma(-/-) T cells. Addition of rIFN-gamma to cultures of IFN-gamma(-/-) T cells, particularly to cultures during TCR triggering resulted in restoration of CCR5 expression. However, CCR5 expression was not induced in STAT4(-/-) T cells by supplementation of rIFN-gamma. These results indicate that for the induction of CCR5 on T cells, 1) STAT4 plays an indispensable role; 2) such a role is not substituted by simply supplementing rIFN-gamma; and 3) IFN-gamma amplifies CCR5 induction depending on the presence of STAT4.  相似文献   

20.
We have demonstrated that Valpha24(+)Vbeta11(+) invariant (Valpha24(+)i) NKT cells from patients with allergic asthma express CCR9 at high frequency. CCR9 ligand CCL25 induces chemotaxis of asthmatic Valpha24(+)i NKT cells but not the normal cells. A large number of CCR9-positive Valpha24(+)i NKT cells are found in asthmatic bronchi mucosa, where high levels of Th2 cytokines are detected. Asthmatic Valpha24(+)i NKT cells, themselves Th1 biased, induce CD3(+) T cells into an expression of Th2 cytokines (IL-4 and IL-13) in cell-cell contact manner in vitro. CD226 are overexpressed on asthmatic Valpha24(+)i NKT cells. CCL25/CCR9 ligation causes directly phosphorylation of CD226, indicating that CCL25/CCR9 signals can cross-talk with CD226 signals to activate Valpha24(+)i NKT cells. Prestimulation with immobilized CD226 mAb does not change ability of asthmatic Valpha24(+)i NKT cells to induce Th2-cytokine production, whereas soluble CD226 mAb or short hairpin RNA of CD226 inhibits Valpha24(+)i NKT cells to induce Th2-cytokine production by CD3(+) T cells, indicating that CD226 engagement is necessary for Valpha24(+)i NKT cells to induce Th2 bias of CD3(+) T cells. Our results are providing with direct evidence that aberration of CCR9 expression on asthmatic Valpha24(+)i NKT cells. CCL25 is first time shown promoting the recruitment of CCR9-expressing Valpha24(+)i NKT cells into the lung to promote other T cells to produce Th2 cytokines to establish and develop allergic asthma. Our findings provide evidence that abnormal asthmatic Valpha24(+)i NKT cells induce systemically and locally a Th2 bias in T cells that is at least partially critical for the pathogenesis of allergic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号