首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of yeast cells to high densities at low, but constant, oxygen concentrations is difficult because the cells themselves respire oxygen; hence, as cell mass increases, so does oxygen consumption. To circumvent this problem, we have designed a system consisting of a computer-controlled gas flow train that adjusts oxygen concentration in the gas flow to match cellular demand. It does this by using a proportional-integral-differential algorithm in conjunction with a three-way valve to mix two gases, adjusting their proportions to maintain the desired oxygen concentration. By modeling yeast cell yields at intermediate to low oxygen concentrations, we have found that cellular respiration declines with oxygen concentration, most likely because of a decrease in the expression of genes for respiratory proteins. These lowered rates of oxygen consumption, together with the gas flow system described here, allow the growth of yeast cells to high densities at low oxygen concentrations. This system can also be used to grow cells at any desired oxygen concentration and for regulated shifts between oxygen concentrations.  相似文献   

2.
The delay between air flow and gas concentration signals is generally assumed to be constant within a breath as well as from breath to breath, but it was not possible to examine the constancy of the delay with the delay determination techniques so far available. Thus we developed new methods for respiratory phase detection and delay determination. The presented algorithm for the detection of the start of inspiration and expiration (phase detection) replaces the generally used valve assembly with two pneumotachographs. Now, the pneumotachograph is used in a bidirectional mode, but with a volume criterion for phase detection replacing the less reliable threshold criterion. To measure the delay between flow and gas concentration signals, a test gas is periodically injected as a marker. This test gas contains less N2 than ambient air. Therefore, the delay is determined as time between the moment of injection and the drop of N2. These two methods rendered it possible to examine delay variations and their consequences. The investigation of various breathing patterns demonstrated that the usually assumed errors caused by delay uncertainty are underestimated. We suggest reliance on a breath-by-breath delay determination to account for delay variations.  相似文献   

3.
A continuous nutrient flow system has been developed to measure microbial activity in soil with various concentrations of added substrate. The system consists of a thin soil layer through which substrate was added continuously over periods up to 4.5 days. Substrate utilization was determined by effluent analysis. Respiration was measured manually by injecting a sample into a gas chromatograph or automatically by coupling the growth chamber to a computer-controlled gas sampling valve. This permitted respiratory CO2 to be measured by the gas chromatograph at intervals selected by the investigator. Software controlling the valve and gas chromatograph not only automated gas phase sampling, but also provided a scan of CO2 evolution and a preliminary data summary. This included the date and time of sample, peak height, and percent CO2 in the gas phase. Data for growth on glucose using a microbial population native to a California annual grassland soil demonstrated that the direct cell count and respiratory techniques for biomass estimation give comparable results. This procedure provides the potential for detailed analyses of substrate utilization in studies of the growth and maintenance of soil microorganisms.  相似文献   

4.
Experiments were undertaken to determine whether respiratory masks worn by horses exercising strenuously on a treadmill may interfere with normal gas exchange. Four collection systems, two flow-through systems and two incorporating one-way valve systems with subject-generated airflow were studied. Six horses performed standard treadmill exercise tests consisting of a 2-min warm up followed by galloping 1 min each at 8,9, and 10 m/s. Each horse exercised six times while wearing each of the four respiratory masks. Each flow-through system was used twice with flow rates of 2,360 and 3,840 l/min for one system, and 3,840 and 6,300 l/min for the other. Arterial blood gas tensions were measured during exercise at each speed for each system and were compared with values measured when the horses performed the same test without wearing a mask. Hypercapnia developed during exercise with each of the respiratory masks except with the 6,300-l/min flow-through system. All horses became hypoxemic during every exercise test, but it was most severe when systems incorporating one-way valves were used. This, plus the degree of hypercapnia observed and a suboptimal heart rate-O2 uptake relationship, indicated that such systems severely impede ventilation and suggest that experiments performed while utilizing them do not represent the normal exercise condition.  相似文献   

5.
The effectiveness of prescribed respiratory therapy is often dependent upon the choice of a respirator (ventilator) that excels for a particular mode of ventilation. The exhalation valve of a ventilator is most often the key to a strong or weak performance. A computer model of the patient's gas flow through the expiratory circuit and exhalation valve is not only beneficial for design, but can also be used to study the optimum performance for a particular mechanical system. For this paper, the system that was used incorporated a linear voice coil actuator suspended by flat spider springs. The details of the modelling are given on a theoretical basis (with the appropriate equations), and the packaged simulation is described. Results are presented for simple computer algorithms with the intention of demonstrating the proper behaviour of the system. There are suggestions for further detailed studies to compare the linear voice coil model with other common exhalation valve mechanical designs, under various modes of ventilation.  相似文献   

6.
Rapidly growing mycobacteria are non-tuberculous mycobacteria amply present in the environment. Although they are not usually pathogenic for humans, they are opportunistic in that they can cause disease in people with disadvantageous conditions or who are immunocompromised. Mycobacterium peregrinum, an opportunistic, rapidly growing mycobacteria, belongs to the M. fortuitum group and has been reported as responsible for human cases of mycobacteriosis. A case of M. peregrinum type III is herein reported as the first in Colombia. It presented as a disseminated disease involving a prosthetic aortic valve (endocarditis) in a seventeen-year-old girl with a well-established diagnosis of prosthetic aortic valve endocarditis who was referred for a surgical replacement. Due to a congenital heart disease (subaortic stenosis with valve insufficiency), she had two previous aortic valve implantation surgeries. One year after the second implantation, the patient presented with respiratory symptoms and weight lost indicative of lung tuberculosis. A chest X-ray did not show parenchymal compromise but several Ziehl-Neelsen stains were positive. An echocardiography showed a vegetation on the prosthetic aortic valve. In blood and sputum samples, M. peregrinum type III was identified through culture, biochemical tests and hsp65 gene molecular analysis (PRA). The patient underwent a valve replacement and received a multidrug antimycobacterial treatment. Progressive recovery ensued and further samples from respiratory tract and blood were negative for mycobacteria.  相似文献   

7.
Criteria and Methodology for Identifying Respiratory Denitrifiers   总被引:2,自引:1,他引:1       下载免费PDF全文
Respiratory denitrification is not always adequately established when bacteria are characterized. We have tested a simple method that allows one to evaluate whether the two necessary criteria to claim denitrification have been met, namely, that N(inf2) or N(inf2)O is produced from nitrate or nitrite and that this reduction is coupled to a growth yield increase. Microorganisms were cultured in sealed tubes under a helium headspace and in the presence of 0, 2, 4, 7, and 10 mM nitrate or nitrite. After growth had ceased, N(inf2) and N(inf2)O were quantified by gas chromatography and the final protein concentration was measured. Net protein production was linearly related to nitrate concentration for all denitrifiers tested and ranged from 2 to 6 g of protein per mol of electron equivalent reduced. Nitrogen recovery as N(inf2) plus N(inf2)O from nitrate and nitrite transformed exceeded 80% for all denitrifiers. We also suggest that a rate of N gas production of >10 (mu)mol/min/g of protein can be used as an additional characteristic definitive of denitrification since this process produces gas more rapidly than other processes. These characteristics were established after evaluation of a variety of well-characterized respiratory denitrifiers and other N(inf2)O-producing nitrate reducers. Several poorly characterized denitrifiers were also tested and confirmed as respiratory denitrifiers, including Aquaspirillum itersonii, Aquaspirillum fasciculus, Bacillus azotoformans, and Corynebacterium nephridii. These criteria distinguished respiratory denitrifiers from other groups that reduce nitrate or produce N(inf2)O. Furthermore, they correctly identified respiratory denitrification in weak denitrifiers, a group in which the existence of this process may be overlooked.  相似文献   

8.
A computer-controlled gas-mixing system is presented. It is capable of mixing four gases, the concentration of three of which will follow a path to be determined by the user. For our purposes the output O2 fraction is maintained constant and the levels of Ar and N2O vary sinusoidally and independently, with periods between 0.25 and 30 min. A fourth gas, N2 is necessary to make the sum of the individual fractions 100%. The system uses banks of between one and four solenoid valves each linked via a sonic choke to a common mixing chamber. A regime of pulse frequency modulation is employed. All calculations and timing of valve switching are performed by a dedicated microcomputer built for the purpose. The device has been used to provide respiratory gas forcing functions for a program of research in respiratory monitoring.  相似文献   

9.
The interrupter technique is used to determine airway and tissue resistance. Their accuracy is influenced by the technical properties of the interrupter device and the compliance of the respiratory system. We investigated the influence of valve characteristics and respiratory system compliance on the accuracy of determining airway and tissue resistance by means of a computer simulation. With decreasing compliance we found increasing errors in both airway and tissue resistance determination of up to 34 and 71%, respectively. On this basis we developed a new occlusion valve, with special emphasis on rapid closing time and tightness in the closed state to improve the accuracy of resistance determination. The newly developed occlusion device greatly improves the accuracy of airway and tissue resistance determination. We conclude that respiratory system compliance is a limiting factor for the accuracy of the interrupter technique. To apply the interrupter technique in patients with extremely low respiratory system compliances, we need sophisticated technical devices.  相似文献   

10.
Insects exchange respiratory gases primarily using tracheal systems that are filled with gas. However, in different developmental and environmental circumstances, liquid can occupy the tracheal system, which can significantly impair its respiratory function. Insects therefore use a suite of mechanisms for tracheal filling, which is the process of replacing tracheal liquids with gas. We review these mechanisms for liquid removal and gas filling. By integrating recent molecular work with older physiological literature, we show that liquid removal likely involves active ion transport in the whole tracheal system. Gas filling reveals fascinating interactions between geometry, surface chemistry of the tracheal walls, the tracheal liquid, and dissolved gases. The temporal proximity to moulting allows for potentially complex interdependencies between gas filling, moult‐associated hormone signaling, and cuticle sclerotization. We propose a mechanistic model for tracheal filling. However, because the composition of the liquid is unknown, it remains hypothetical.  相似文献   

11.
Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory system.  相似文献   

12.
Summary We have built an autosampler system that delivers the contents of pressurized gas collection vials to the injection port of a gas chromatograph. The three-part system consists of a shuttle base upon which vials move sequentially past a static sampling point, a sampling needle that is driven through vial septa by an air-driven piston, and an air-actuated sample valve that alternately places a sample loop in line with either a sample delivery line from the sample needle or a carrier stream leading to the gas chromatograph. We have used the system to analyze several thousand gas samples taken from soil cores assayed for denitrification activites, and have found the system reliable and capable of producing highly repeatable results.Journal Article No. 11491 of the Michigan State Agricultural Experiment Station, East Lansing, Michigan 48824, USA  相似文献   

13.
We automated the inert gas rebreathe technique for measurement of end-expiratory lung volume (EELV) during heavy exercise. We also assessed the use of two gas tracers (He and N2) vs. a single gas tracer (He) for measurement of this lung volume and compared the two-tracer EELV to changes in the inspiratory capacity (defined with transpulmonary pressure) and shifts in the end-expiratory pressure from rest through heavy exercise. A computer program switched a pneumatic valve when flow crossed zero at end expiration and defined points in the He and N2 traces for calculation of EELV. An inherent delay of the rebreathing valve (50 ms) caused virtually no error at rest and during light exercise and an error of 74 +/- 9 ml in the EELV at peak inspiratory flow rates of 4 l/s. The measurement of EELV by the two gas tracers was closely correlated to the single-gas tracer measurement (r = 0.97) but was consistently higher (120 +/- 10 ml) than when He was used alone. This difference was accentuated with increased work rates (2-5% error in the EELV, rest to heavy exercise) and as rebreathe time increased (2-7% error in the EELV with rebreathe times of 5-20 s for all work loads combined). The double-gas tracer measurement of EELV agreed quite well with the thoracic gas volume at rest (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Tidal ventilation gas-exchange models in respiratory physiology and medicine not only require solution of mass balance equations breath-by-breath but also may require within-breath measurements, which are instantaneous functions of time. This demands a degree of temporal resolution and fidelity of integration of gas flow and concentration signals that cannot be provided by most clinical gas analyzers because of their slow response times. We have characterized the step responses of the Datex Ultima (Datex Instrumentation, Helsinki, Finland) gas analyzer to oxygen, carbon dioxide, and nitrous oxide in terms of a Gompertz four-parameter sigmoidal function. By inversion of this function, we were able to reduce the rise times for all these gases almost fivefold, and, by its application to real on-line respiratory gas signals, it is possible to achieve a performance comparable to the fastest mass spectrometers. With the use of this technique, measurements required for non-steady-state and tidal gas-exchange models can be made easily and reliably in the clinical setting.  相似文献   

15.
Nippon Sanso K.K developed a compact semi-closed underwater breathing apparatus, the eOBA. It consists of a mouthpiece, manifold with a purge valve, two spring-loaded flexible tubes, a small CO2 absorbent canister (net wt. = 190g), and two compact high pressure bottles (50ccx2: 190kg/cm2: 80%O2, 20%N2) with a regulator which supplies the gas at the constant flow rate of 1.5 l/min and lasts for 10 min. Thus, a counterlung is not incorporated. However, spring-loaded tubes act as a counterlung since its volume increases to 3.5 l when fully inflated. Dives to a depth of 5m are also recommended because of no bypass valve. This new eOBA was tested using the mechanical breathing machine and CO2 supply system to the circuit. For the various combinations of tidal volumes (0.5-2.5 l) and respiratory rates (10-20 breaths/min), the pressure at the mouthpiece, respiratory volume and the CO2 level were continuously monitored. The CO2 absorption rates were then calculated. The thin sloping P-V loops demonstrate that the eOBA is a flow dependent type of apparatus. It was found that the external work of breathing (0.1 kg.m/l at 30 l/min) were allowable. The CO2 absorption rates were sufficient when minute ventilation increased to 30 l/min. Thus, results show that the eOBA must be suitable for shallow and short dives.  相似文献   

16.
We compared the hemodynamic and respiratory effects, recovery time, and cost of two gas inhalants (isoflurane and sevoflurane) for anesthetic induction and maintenance of beaver (Castor canadensis) during surgery to implant radio transmitters in the peritoneal cavity. Heart rate, respiratory rate, relative hemoglobin saturation with oxygen (SpO2), and body temperature were measured every 5 min for the first 45 min, and arterial blood gas was measured once, 25 min into the anesthetic procedure. Induction for either agent was smooth and rapid. Heart rate and respiratory rate both decreased during the procedure though neither was lower than baseline values reported in the literature for beaver. Relative hemoglobin saturation with oxygen, body temperature, and blood gas variables did not differ between each anesthetic regime. Both inhalants caused slight respiratory acidosis. Recovery time from anesthesia was highly variable (1-178 min) but did not differ statistically between drugs. Sevoflurane costs ($22.30/60 min) were much higher than isoflurane costs ($3.50/60 min). We recommend isoflurane or sevoflurane for anesthetic induction and maintenance of beaver because of the lack of physiologic differences.  相似文献   

17.
The mitral valve is a highly heterogeneous tissue composed of two leaflets, anterior and posterior, whose unique composition and regional differences in material properties are essential to overall valve function. While mitral valve mechanics have been studied for many decades, traditional testing methods limit the spatial resolution of measurements and can be destructive. Optical coherence elastography (OCE) is an emerging method for measuring viscoelastic properties of tissues in a noninvasive, nondestructive manner. In this study, we employed air-pulse OCE to measure the spatial variation in mitral valve elastic properties with micro-scale resolution at 1 mm increments along the radial length of the leaflets. We analyzed differences between the leaflets, as well as between regions of the valve. We found that the anterior leaflet has a higher elastic wave velocity, which is reported as a surrogate for stiffness, than the posterior leaflet, most notably at the annular edge of the sample. In addition, we found a spatial elastic gradient in the anterior leaflet, where the annular edge was found to have a greater elastic wave velocity than the free edge. This gradient was less pronounced in the posterior leaflet. These patterns were confirmed using established uniaxial tensile testing methods. Overall, the anterior leaflet was stiffer and had greater heterogeneity in its mechanical properties than the posterior leaflet. This study measures differences between the two mitral leaflets with greater resolution than previously feasible and demonstrates a method that may be suitable for assessing valve mechanics following repair or during the engineering of synthetic valve replacements.  相似文献   

18.
Tracheal obstruction (TO) stimulates growth of hypoplastic lungs in the fetus, but there is little knowledge of subsequent postnatal respiratory function. We have determined the effectiveness of TO in fetal sheep with existing lung hypoplasia in restoring postnatal respiratory function. Lung hypoplasia was induced by lung liquid drainage from 112 days of gestation to term ( approximately 148 days). We used an untreated group (ULH), a treated group (TLH) in which the trachea was obstructed for 10 days, and a control group. ULH lambs died within 4 h of birth. TLH lambs were hypoxic for the first week and were hypercapic at 2 days. Pulmonary diffusing capacity, gas volumes, and respiratory compliances were not different between control and TLH lambs. Minute ventilation was not different between the two groups; however, tidal volumes were lower and respiratory frequencies were higher in TLH lambs than in controls for 2 wk after birth. We conclude that 10 days of TO in the presence of initial lung hypoplasia prevents death at birth and returns most aspects of pulmonary function to normal by 1-2 wk after birth.  相似文献   

19.
20.
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号