首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian plasma membrane (PM) NADH-oxidoreductase (PMOR) system is a multi-enzyme complex located in the plasma membrane of all eukaryotic cells, harboring at least two distinct activities, the plasma membrane NADH-ferricyanide reductase and the NADH-oxidase. To assess the behaviour of the two activities of the PMOR system, we measured the NADH-ferricyanide reductase and NADH-oxidase activities in fibroblast cell lines derived from patients carrying a mitochondrial DNA (mtDNA) G11778A mutation. We also measured the two activities in other cell lines, the HL-60 and HeLa (S3) lines, as well as in rho0 cells (cells devoid of mtDNA) generated from those lines and the fibroblast cells. These rho0 cells consequently lack oxidative phosphorylation and rely on anaerobic glycolysis for their ATP need. We have proposed that in rho0 cells, at least in part, up-regulation of the PMOR is a necessity to maintain the NAD+/NADH ratio, and a pre-requisite for cell growth and viability. We show here that the PM NADH-ferricyanide reductase activity was up-regulated in HL-AV2 (HL-60 rho0) cell lines, but not in the other rho0 and mtDNA mutant lines. The plasma membrane NADH oxidase activity was found to be up-regulated in both HL-AV2 and HeLa rho0 cell lines, but not significantly in the fibroblast rho0 and G11778A lines.  相似文献   

2.
An A to G transition mutation at nucleotide pair 8344 in human mitochondrial DNA (mtDNA) has been identified as the cause of MERRF. The mutation alters the T psi C loop of the tRNA(Lys) gene and creates a CviJI restriction site, providing a simple molecular diagnostic test for the disease. This mutation was present in three independent MERRF pedigrees and absent in 75 controls, altered a conserved nucleotide, and was heteroplasmic. All MERRF patients and their less-affected maternal relatives had between 2% and 27% wild-type mtDNAs and showed an age-related association between genotype and phenotype. This suggests that a small percentage of normal mtDNAs has a large protective effect on phenotype. This mutation provides molecular confirmation that some forms of epilepsy are the result of deficiencies in mitochondrial energy production.  相似文献   

3.
In this study, we investigated the effects of the voltage-dependent anion channel (VDAC) on the mitochondrial calcium cycle in cell lines carrying the mitochondrial DNA A4263G mutation. We established lymphoblastoid cell lines from three symptomatic individuals and one asymptomatic individual from the large Chinese Han family carrying the A4263G mutation; these were compared with three control cell lines. The mitochondrial Ca2+ concentration and membrane potential were detected by loading cells with Rhod-2 and JC-1, respectively. Confocal imagines showed the average Rhod-2 and JC-1 fluorescence levels of individuals carrying the tRNAIle A4263G mutation were lower than those of the control group (P < 0.05). The baseline Rhod-2 fluorescence in the control group increased after exposure to atractyloside (an opener of the adenine nucleotide translocator, P < 0.05), but no significant change was detected in the cell line harboring the A4263G mutation (P > 0.05). The baseline JC-1 fluorescence in both the mutated and control cell lines decreased after subsequent exposure to atractyloside (P < 0.05), whereas this effect of atractyloside was inhibited by Cyclosporin A (CsA, a VDAC blocker). We conclude that the mitochondrial VDAC is involved in both the increase of mitochondrial permeability to Ca2+ and the decrease of mitochondrial membrane potential in cell lines carrying the mtDNA A4263G mutation.  相似文献   

4.
5.
A 5 kilobase deletion in mitochondrial DNA (mtDNA) has been reported to be responsible for the specific complex I deficiency in the substantia nigra (SN) of the Parkinson's disease (PD) brain. We have studied mitochondrial respiratory chain function in the SN from control and PD subjects, and analysed mtDNA, extracted from the same tissues, by Southern blot and the polymerase chain reaction (PCR). Quantitation of the levels of the deletion indicate that it does not contribute to the pathogenesis of PD nor to a complex I deficiency but seems likely to be an age-related observation.  相似文献   

6.
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.  相似文献   

7.

Background

Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown.

Methods

Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5–4 kHz) was used as a measure of the clinical severity of disease.

Results

Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74–67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5–4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable.

Conclusions

Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities.  相似文献   

8.
The reasons of high level of human mitochondrial DNA (mtDNA) variability remain to be largely unclear. We analyze here three probable mechanisms of mutagenesis leading to generation of mtDNA nucleotide substitutions: (1) deamination of DNA bases; (2) tautomeric migrations of protons in nitrous bases; and (3) hydrolysis of glycoside link between DNA bases and carbohydrate residue on the background of free radical damage of the mitochondrial DNA polymerase gamma. By means of quanto-chemical calculations, it was shown that the most substantiated mechanism of mutation generation is hydrolysis of N-glycoside link. This mechanism is suggestive to be more prominent on the H-strand, which remains to be single-stranded for a long time during the mtDNA replication. It was revealed also that hydrolytic deamination of adenines on the single-stranded H-strand is among of the most probable mechanisms leading to high frequency of T --> C transitions seen in the L-strand mutational spectra of the mtDNA major non-coding region.  相似文献   

9.
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  相似文献   

10.
Summary Mitochondrial DNA was isolated from an oligomycin-resistant petite mutant of yeast, Saccharomyces cerevisiae. It had repeated sequences of 3600 base pairs. This segment was about one twentieth of the whole mtDNA of wild type yeast, which had a size of 74 kilo base pairs.This segment of mtDNA had one cleavage site for a restriction endonuclease, Hind II, which was more resistant to cleavage than the other Hind II sites in wild type mtDNA. It had two cleavage sites for Hha I and gave two Hha fragments, which were arranged alternatively. Digestion with Hae III gave four fragments and these fragments were mapped.Mitochondrial DNA of this mutant showed a loss of heterogeneity in a melting profile. It melted within a narrow range of temperature, which was similar to that of poly dA·poly dT. Its differential melting curve was significantly different from that of wild type mtDNA.Mapping of mtDNA of a wild type yeast was carried out with restriction endonucleases. Fragments of mtDNA, which were isolated from petites carrying oligomycin-erythromycin-chloramphenicol-resistance and erythromycin-chloramphenicol resistance were also mapped. Loci of oligomycin-resistance, erythromycin-resistance and chloramphenicol-resistance were investigated based on the maps of Eco R I fragments and Hind II fragments.  相似文献   

11.
A large MERRF pedigree permitted the direct testing of the predictions for a mitochondrial DNA (mtDNA) mutation. A mtDNA mutation was demonstrated by proving maternal inheritance and by identifying specific deficiencies in muscle energetics and mitochondrial respiratory complexes I and IV. mtDNA heteroplasmy (a mixture of mutant and wild-type mtDNAs) was demonstrated by showing variation in the mitochondrial energetic capacity between family members. The phenotypic consequences of differential tissue-specific reliance on mitochondrial ATP was shown by correlating individual respiratory deficiency with the nature and severity of patients' clinical manifestations. The observed spectrum of clinical manifestations resulting from this heteroplasmic mtDNA mutation implies that mtDNA disease may be much more prevalent than previously anticipated.  相似文献   

12.
We studied 42 individuals, including 8 patients with either complete or partial syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 8 patients with either complete or partial syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) and 26 maternal family members who carried either the A3243G or A8344G mutation of mitochondrial DNA (mtDNA). Clinical manifestations and prognosis were followed up in the patients harboring the A3243G or A8344G mutation. The relationship between clinical features and proportions of mutant mtDNAs in muscle biopsies, blood cells and/or hair follicles was studied. In the 8 regularly followed patients with the A3243G mutation, 4 died within 1 month to 7 years due to status epilepticus and/or recurrent stroke-like episodes. Two patients developed marked mental deterioration and 2 remained stationary. All of the patients harboring the A8344G mutation were stable or deteriorated slightly, except for 1 patient who died due to brain herniation after putaminal hemorrhage. The A3243G and A8344G mtDNA mutations were heteroplasmic in the muscle biopsies, blood cells and hair follicles of both the probands and their maternal family members. The mean proportion of A3243G mutant mtDNA in the muscle biopsies of the patients with MELAS syndrome (68.5 ± 21.3%, range 33–92%) was significantly higher than that of the asymptomatic family members (37.1 ± 12.6%, range 0–51%). The average proportions of A8344G mutant mtDNA in the muscle biopsies (90.1 ± 3.9%, range 89–95%) and hair follicles (93.9 ± 6.4%, range 84–99%) of the patients with MERRF syndrome were also significantly higher than those of the asymptomatic family members (muscle: 40.3 ± 39.5%, range 1–80%; hair follicles: 51.0 ± 44.5%, range 0.1–82%). We concluded that measurement of the proportion of mutant mtDNA in muscle biopsies may provide useful information in the identification of symptomatic patients with mitochondrial encephalomyopathies. For patients with the A3243G mutation, the prognosis was related to status epilepticus and the number of recurrent stroke-like episodes and was much worse than for patients with the A8344G mutation of mtDNA, who had stable or slowly deteriorating clinical courses.  相似文献   

13.
Yasukawa T  Suzuki T  Ishii N  Ueda T  Ohta S  Watanabe K 《FEBS letters》2000,480(2-3):175-178
Hen lysozyme single-disulfide variants were constructed to characterize the structures associated with the formation of individual native disulfide bonds. Circular dichroism spectra and the effective concentration of protein thiol groups showed that the propensity for structure formation was relatively high for Cys-6–Cys-127 and Cys-30–Cys-115 disulfides. The urea concentration dependence of individual effective concentrations showed that the apparent sizes of the structures were 14–50% of the whole molecule. The intrinsic stability of each submolecular structure in a reduced form of protein, obtained by subtracting the entropic contribution of cross-linking, was highest for Cys-64–Cys-80 and lowest for Cys-76–Cys-94 disulfide bonds.  相似文献   

14.
We have isolated a Saccharomyces cerevisiae mutant that shows an increased tendency to form cytoplasmic petites (respiration-deficient ρ or ρ0 mutants) in response to treatment of cells growing on a solid medium with the DNA-damaging agent methyl methanesulfonate or ultraviolet light. The mutation in this strain, atm1-1, was found to cause a single amino acid substitution in ATM1, a nuclear gene that encodes the mitochondrial ATP-binding cassette (ABC) transporter. When the mutant cells were grown in liquid glucose medium, they accumulated free iron within the mitochondria and at the same time gave rise to spontaneous cytoplasmic petite mutants, as seen previously in cells carrying a mutation in a gene homologous to the human gene responsible for Friedreich's ataxia. Analysis of the effects of free iron and malonic acid (an inhibitor of oxidative respiration in mitochondria) on the incidence of petites among the mutant cells indicated that spontaneous induction of petites was a consequence of oxidative stress rather than a direct effect of either a defect in the ATM1 gene or the accumulation of free iron. We observed an increase in the incidence of strand breaks in the mitochondrial DNA of the atm1-1 mutant cells. Furthermore, we found that rates of induction of petites and accumulation of strand breaks in mitochondrial DNA were enhanced in the atm1-1 mutant by the introduction of another mutation, mhr1-1, which results in a deficiency in mitochondrial DNA repair. These observations indicate that spontaneous induction of petites in the atm1-1 mutant is a consequence of oxidative damage to mitochondrial DNA mediated by enhanced accumulation of mitochondrial iron. Received: 26 March 1999 / Accepted: 29 June 1999  相似文献   

15.
Lee HC  Hsu LS  Yin PH  Lee LM  Chi CW 《Mitochondrion》2007,7(1-2):157-163
Somatic mutations in mitochondrial DNA (mtDNA) have been demonstrated in various human cancers. Many cancers have high frequently of mtDNA with homoplasmic point mutations, and carry less frequently of mtDNA with large-scale deletions as compared with corresponding non-cancerous tissue. Moreover, most cancers harbor a decreased copy number of mtDNA than their corresponding non-cancerous tissue. However, it is unclear whether the process of decreasing in mtDNA content would be involved in an increase in the heteroplasmic level of somatic mtDNA point mutation, and/or involved in a decrease in the proportion of mtDNA with large-scale deletion in cancer cells. In this study, we provided evidence that the heteroplasmic levels of variations in cytidine number in np 303-309 poly C tract of mtDNA in three colon cancer cells were not changed during an ethidium bromide-induced mtDNA depleting process. In the mtDNA depleting process, the proportions of mtDNA with 4977-bp deletion in cybrid cells were not significantly altered. These results suggest that the decreasing process of mtDNA copy number per se may neither contribute to the shift of homoplasmic/heteroplasmic state of point mutation in mtDNA nor to the decrease in proportion of mtDNA with large-scale deletions in cancer cells. Mitochondrial genome instability and reduced mtDNA copy number may independently occur in human cancer.  相似文献   

16.
We report here the characterization of a five-generation large Chinese family with Leber's hereditary optic neuropathy (LHON). Very strikingly, six affected individuals of 38 matrilineal relatives (17 females/21 males) are exclusively males in this Chinese family. These matrilineal relatives in this family exhibited late-onset/progressive visual impairment with a wide range of severity, ranging from blindness to normal vision. The age of onset in visual impairment varies from 17 to 30 years. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the G11778A mutation in ND4 gene and 29 other variants. This mitochondrial genome belongs to the Southern Chinese haplogroup B5b. We showed that the G11778A mutation is present at near homoplasmy in matrilineal relatives of this Chinese family but not in 164 Chinese controls. Incomplete penetrance of LHON in this family indicates the involvement of modulatory factors in the phenotypic expression of visual dysfunction associated with the G11778A mutation. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and phenotypic variability of LHON in this Chinese family carrying the G11778A mutation.  相似文献   

17.
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila.  相似文献   

18.
19.
Mitochondrial DNA mutations are undoubtedly a factor that contributes to sensorineural, non-syndromic deafness. One specific mutation, the A1555G, is associated with both aminoglycoside-induced and non-syndromic hearing impairment. The mutation is considered to be the most common of all mitochondrial DNA deafness-causing mutations but its frequency varies between different populations. Here we report on the first large screening of the A1555G mitochondrial DNA mutation in the Greek population. The aim of this study was to determine the frequency of the A1555G mutation in Greek sensorineural, non-syndromic deafness patients, with childhood onset. We screened 478 unrelated Greek patients with hearing loss of any degree and found two individuals harboring the A1555G mutation (0.42%). Both cases had been subjected to aminoglycosides. They were prelingual, familial and homoplasmic for the A1555G mutation. One of the cases was also found heterozygous for the frequent GJB2 35delG mutation, while the other case was negative. The A1555G mutation seems to be less common than in other European populations.  相似文献   

20.
Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation   总被引:3,自引:0,他引:3  
The pathogenic mechanisms of the A1555G mitochondrial DNA mutation in the 12S rRNA gene, associated with maternally inherited sensorineural deafness, are largely unknown. Previous studies have suggested an involvement of nuclear factor(s). To address this issue cybrids were generated by fusing osteosarcoma cells devoid of mtDNA with enucleated fibroblasts from two genetically unrelated patients. Furthermore, to determine the contribution, if any, of the mitochondrial and nuclear genomes, separately or in combination, in the expression of the disease phenotype, transmitochondrial fibroblasts were constructed using control and patient's fibroblasts as nuclear donors and homoplasmic mutant or wild-type cybrids as mitochondrial donors. Detailed analysis of mutant and wild-type cybrids from both patients and transmitochondrial fibroblast clones did not reveal any respiratory chain dysfunction suggesting that, if nuclear factors do indeed act as modifier agents, they may be tissue-specific. However, in the presence of high concentrations of neomycin or paromomycin, but not of streptomycin, mutant cells exhibit a decrease in the growth rate, when compared to wild-type cells. The decrease did not correlate with the rate of synthesis or stability of mitochondrial DNA-encoded subunits or respiratory chain activity. Further studies are required to determine the underlying biochemical defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号