首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our goal was to determine whether chlorpyrifos oxon, dichlorvos, diisopropylfluorophosphate (DFP), and sarin covalently bind to human albumin. Human albumin or plasma was treated with organophosphorus (OP) agent at alkaline pH, digested with pepsin at pH 2.3, and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Two singly charged peaks m/z 1718 and 1831, corresponding to the unlabeled peptide fragments containing the active site Tyr411 residue, were detected in all samples. The sequences of the two peptides were VRYTKKVPQVSTPTL and LVRYTKKVPQVSTPTL. The peptide-OP adducts of these peptides were also found. They had masses of 1854 and 1967 for chlorpyrifos oxon, 1825 and 1938 for dichlorvos, 1881 and 1994 for DFP, and 1838 and 1938 for sarin; these masses fit a mechanism whereby OP bound covalently to Tyr411. The binding of DFP to Tyr411 of human albumin was confirmed by electrospray tandem mass spectrometry and analysis of product ions. None of the OP-albumin adducts lost an alkoxy group, leading to the conclusion that aging did not occur. Our results show that OP pesticides and nerve agents bind covalently to human albumin at Tyr411. The presence of Tyr411 on an exposed surface of albumin suggests that an antibody response could be generated against OP-albumin adducts.  相似文献   

2.
Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: k(cat) = 0.13 +/- 0.02 min(-1) and Ks = 0.67 +/- 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (k(cat) = k2). Though the aryl acylamidase activity of albumin is low (k(cat)/Ks = 195 M(-1)min(-1)), because of its high concentration in human plasma (0.6-1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.  相似文献   

3.
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are serine hydrolase enzymes that catalyze the hydrolysis of acetylcholine.2. (–) Huperzine A is an inhibitor of AChE and is being considered for the treatment of Alzheimer's disease.3. In addition to esterase activity, AChE and BuChE have intrinsic aryl acylamidase activity.4. The function of aryl acylamidase is unknown but has been speculated to be important in Alzheimer pathology.5. Kinetic effects of (–) huperzine A and ( ±)$ huperzine A on the aryl acylamidase activity of human cholinesterases were examined.6. (–) Huperzine A inhibited the aryl acylamidase activities of both AChE and BuChE.7. (±) Huperzine A inhibited this function in AChE but stimulated BuChE aryl acylamidase suggesting that the (+) enantiomer is a powerful activator of this enzyme activity.8. The two huperzine enantiomers may prove to be useful tools to examine the function of aryl acylamidase activity, including its role in Alzheimer pathology.  相似文献   

4.
采用联合亲和层析法从人小脑及红细胞膜中纯化了AChE,纯化的人脑及红细胞AChE在SDS-PAGE上呈一主带,分子量约为66000。人脑AChE制备酯酶与酰胺酶比活性分别为1299与143U/mg,人红细胞AChE制备分别为4584与747U/mg。人脑及红细胞AChE制备的酯酶与酰胺酶活性最适pH较接近,在pH7.5-8.0之间,酯酶活性底物ATCh对其芳基酰胺酶活性有抑制作用。IC_(50)分别为10.2×10~(-3)及3×10~(-3)mol/L。梭曼对其酯酶及酰胺酶活性均有明显抑制作用,说明二者均需活性中心丝氨酸参与。  相似文献   

5.
Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5 mm p-nitrophenyl acetate for 5 min to 2 weeks, or with 10 mm p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mm p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mm p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with beta-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 degrees C was 61 +/- 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.  相似文献   

6.
Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: kcat = 0.13 ± 0.02 min ? 1 and Ks = 0.67 ± 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (kcat = k2). Though the aryl acylamidase activity of albumin is low (kcat/Ks = 195 M? 1min? 1), because of its high concentration in human plasma (0.6–1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.  相似文献   

7.
Phenacetin N-deacetylase was characterized in monkey brain. The enzyme needed Triton X-100 for maximal extraction and it had a high specific activity in cerebellum and in the nuclear fraction of whole monkey brain. It differed from the brain aryl acylamidase in both the regional and subcellular distributions. Brain aryl acylamidase purified by affinity chromatography was ineffective in deacetylating phenacetin. All the potent inhibitors of brain aryl acylamidase such as serotonin, tryptamine, acetylcholine and its analogues and neostigmine had no effect on phenacetin deacetylase. However, brain pehnacetin deacetylase was moderately inhibited by indole-3-acetic acid and 5-hydroxy indole-3-acetic acid properties similar to those of liver aryl acylamidase. Acetaminophen was not deacetylated by the brain phenacetin deacetylase.  相似文献   

8.
Purified human serum butyrylcholinesterase (approximately 90-kDa subunit) is known to exhibit aryl acylamidase and peptidase activity. Limited alpha-chymotrypsin digestion of the purified butyrylcholinesterase gave three major protein fragments of approximately 50 kDa, approximately 21 kDa and approximately 20 kDa. In our earlier studies [Rao and Balasubramanian (1989) Eur. J. Biochem. 179, 639-644] we characterized the approximately 20-kDa fragment and showed that it exhibited both butyrylcholinesterase and aryl acylamidase activities. In the present studies the approximately 50-kDa fragment is characterized. This fragment, after isolation by Sephadex G-75 chromatography from a chymotryptic digest of purified butyrylcholinesterase, exhibited only peptidase activity and was devoid of cholinesterase and aryl acylamidase activities. It could bind to a column of Ricinus communis agglutinin bound to Sepharose, indicating its glycosylated nature and the presence of galactose. The peptidase activity in the approximately 50-kDa fragment could be immuno-precipitated by a polyclonal antibody raised against purified butyrylcholinesterase. SDS-gel electrophoresis of this fragment isolated by R. communis agglutinin-Sepharose and Sephadex G-75 chromatography showed a protein band of approximately 50 kDa by silver staining. Amino-terminal sequence analysis of the approximately 50-kDa fragment gave the sequence of Gly-Pro-Thr-Val-Asp which corresponded to amino acid residues 291-295 in the butyrylcholinesterase sequence [Lockridge et al. (1987) J. Biol. Chem. 262, 549-557]. The combined results suggested that alpha-chymotrypsin digestion of human serum butyrylcholinesterase resulted in the formation of a approximately 20-kDa fragment exhibiting both cholinesterase and aryl acylamidase activities and a approximately 50-kDa fragment exhibiting only peptidase activity.  相似文献   

9.
Acetylcholinesterase purified from cobra (Naja naja) venom exhibits a serotonin-sensitive aryl acylamidase activity. Both acetylcholinesterase and aryl acylamidase activities co-eluted in column chromatographic procedures (Sephadex G-75 and Zinc-Sepharose), co-migrated on polyacrylamide gel electrophoresis, co-immunoprecipitated by anti-snake venom antibody and showed the same heat denaturation profile at 40 degrees C. Further, several potent acetylcholinesterase inhibitors at different concentrations inhibited the cholinesterase and aryl acylamidase activities to the same extent. It is concluded that in cobra venom, acetylcholinesterase is associated with a serotonin-sensitive aryl acylamidase activity similar to earlier observations made with acetylcholinesterase from different sources.  相似文献   

10.
A de-acetylase (aryl acylamidase, E.C.3.5.1.13) has been isolated and partially characterized from rat brain. Previous studies have shown that this enzymatic activity is inhibited by low concentrations of serotonin. This report examines the effects of closely related tryptamine derivatives and demonstrates that enzymatic activity is stereospecifically inhibited by LSD. Similar enzymatic activity from liver was found to be insensitive to any of the compounds tested. The significance of these findings with regard to well known serotonin-LSD interactions is discussed.  相似文献   

11.
The effect of chemical modification on the acetylcholinesterase and the aryl acylamidase activities of purified acetylcholinesterase from electric eel and basal ganglia was investigated in the presence and absence of acetylcholine, the substrate of acetylcholinesterase, and 1,5-bis[4-(allyldimethylammonium)phenyl]pentan-3-one dibromide (BW284C51), a reversible competitive inhibitor of acetylcholinesterase. Trinitrobenzenesulfonic acid, pyridoxal phosphate, acetic anhydride, diethyl pyrocarbonate, and 2-hydroxy-5-nitrobenzyl bromide under specified conditions inactivated both acetylcholinesterase and aryl acylamidase in the absence of acetylcholine and BW284C51. Chemical modifications in the presence of acetylcholine and BW284C51 by all the above except diethyl pyrocarbonate selectively prevented the loss of acetylcholinesterase but not aryl acylamidase activity; modification by diethyl pyrocarbonate in the presence of acetylcholine and BW284C51 prevented the loss of both acetylcholinesterase and aryl acylamidase activities. Treatment with N-acetylimidazole resulted in the inactivation of acetylcholinesterase and the activation of aryl acylamidase. These changes in both the activities could be prevented by acetylcholine and BW284C51. Modification by phenylglyoxal, 2,4-pentanedione, or N-ethylmaleimide did not affect the enzyme activities. Indophenylacetate hydrolase activity followed a pattern similar to that of acetylcholinesterase in all the above modification studies. The results suggested essential lysine, tyrosine, tryptophan, and histidine residues for the active center of acetylcholinesterase and essential lysine, histidine, and tryptophan residues for the active center of aryl acylamidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Serotonin-sensitive aryl acylamidase in rat brain   总被引:1,自引:0,他引:1  
Aryl acylamidase (E.C.3.5.1.13) was extracted from rat brain. The enzyme activity was inhibited by low concentrations of serotonin. The inhibition was non-competitive type and Ki value was about 3 × 10?5M. Tryptamine inhibited the enzyme to a lesser extent. Other amines such as noradrenaline, tyramine and histamine did not affect the enzyme reaction. In contrast, aryl acylamidase from rat liver was insensitive to serotonin.  相似文献   

13.
The effect of chemical modification on the pseudocholinesterase and aryl acylamidase activities of purified human serum pseudocholinesterase was examined in the absence and presence of butyrylcholine iodide, the substrate of pseudocholinesterase. Modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, diethylpyrocarbonate and trinitrobenzenesulfonic acid caused a parallel inactivation of both pseudocholinesterase and aryl acylamidase activities that could be prevented by butyrylcholine iodide. With phenylglyoxal and 2,4-pentanedione as modifiers there was a selective activation of pseudocholinesterase alone with no effect on aryl acylamidase. This activation could be prevented by butyrylcholine iodide. N-Ethylmaleimide and p-hydroxy-mercuribenzoate when used for modification did not have any effect on the enzyme activities. The results suggested essential tryptophan, lysine and histidine residues at a common catalytic site for pseudocholinesterase and aryl acylamidase and an arginine residue (or residues) exclusively for pseudocholinesterase. The use of N-acetylimidazole, tetranitromethane and acetic anhydride as modifiers indicated a biphasic change in both pseudocholinesterase and aryl acylamidase activities. At low concentrations of the modifiers a stimulation in activities and at high concentrations an inactivation was observed. Butyrylcholine iodide or propionylcholine chloride selectively protected the inactivation phase without affecting the activation phase. Protection by the substrates at the inactivation phase resulted in not only a reversal of the enzyme inactivation but also an activation. Spectral studies and hydroxylamine treatment showed that tyrosine residues were modified during the activation phase. The results suggested that the modified tyrosine residues responsible for the activation were not involved in the active site of pseudocholinesterase or aryl acylamidase and that they were more amenable for modification in comparison to the residues responsible for inactivation. Two reversible inhibitors of pseudocholinesterase, namely ethopropazine and imipramine, were used as protectors during modification. Unlike the substrate butyrylcholine iodide, these inhibitors could not protect against the inactivation resulting from modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide and trinitrobenzenesulfonic acid. But they could protect against the activation of pseudocholinesterase and aryl acylamidase by low concentrations of N-acetylimidazole and acetic anhydride thereby suggesting that the binding site of these inhibitors involves the non-active-site tyrosine residues.  相似文献   

14.
Abstract: Melatonin deacetylase, an enzyme activity recently discovered in the Xenopus laevis retina, regulates local melatonin levels. The deacetylase occurs in retina, retinal pigment epithelium, and skin, all sites of melatonin action, and is widely distributed among vertebrates. We have solubilized the enzyme from Xenopus retina and pigment epithelium using nonionic detergents, and have developed a specific enzyme assay. We have characterized the enzyme and now report that the deacetylase is relatively specific for melatonin and is inhibited by the melatonin precursor N -acetylserotonin and the product of the deacetylase, 5-methoxytryptamine. Inhibition of deacetylase activity by eserine (physostigmine) suggests a relationship between deacetylase and cholinesterase activities. However, among a variety of cholinesterase inhibitors tested, only eserine inhibits the deacetylase. Furthermore, eserine is much less potent as an inhibitor of the deacetylase than the cholinesterases, and purified cholinesterases failed to deacetylate melatonin. We also show that melatonin deacetylase and aryl acylamidase (an enzyme related to cholinesterases) activities are differentially extractable from Xenopus ocular tissues, and that they exhibit different pH optima and inhibition profiles. Our results provide an initial characterization of the Xenopus retinal melatonin deacetylase, and indicate that deacetylase activity is distinct from cholinesterase and aryl acylamidase activities.  相似文献   

15.
Abstract— Rat liver and brain slices were incubated in vitro with [3H]melatonin. Liver slices synthesized small amounts of [3H]5-methoxyindoleacetic acid ([3H]5-MIAA) along with other melatonin metabolites including 6-hydroxymelatonin. Pretreatment of animals prior to killing with the irreversible monoamine oxidase inhibitor pargyline allowed [3H]5-methoxytryptamine ([3H]5-MT) to be recovered from the incubation. No [3H]5-MIAA or [3H]5-MT could be detected in incubations with hypothalamic slices or following intraventrieular injection of [3H]melatonin. The possibility that the deacetylase aryl acylamidase was in part responsible for the deacetylation occurring in liver slices was examined. Liver aryl acylamidase was able to utilize [3H]melatonin as substrate to produce [3H]5-MT. Furthermore, the liver enzyme was inhibited by melatonin ( Ki. 1 m m ) when tested with the alternate substrate o -nitroacetanalide. Brain aryl acylamidase did not generate any detectable [3H]5-MT nor was it inhibited by melatonin. These results suggest that 5-MT is not formed in brain from melatonin although trace amounts of 5-MT in the periphery could be derived from this precursor.  相似文献   

16.
Purified human serum butyrylcholinesterase, which exhibits cholinesterase, aryl acylamidase, and peptidase activities, was cross-reacted with two different monoclonal antibodies raised against human serum butyrylcholinesterase. All three activities were immunoprecipitable at different dilutions of the two monoclonal antibodies. At the highest concentration of the antibodies used, nearly 100% of all three activities were precipitated, and could be recovered to 90–95% in the immunoprecipitate. The peptidase activity exhibited by the purified butyryl-cholinesterase was further characterized using both Phe-Leu and Leu-enkephalin as substrates. ThepH optimum of the peptidase was in the range of 7.5–9.5 and the divalent cations Co2+, Mn2+, and Zn2+ stimulated its activity. EDTA and other metal complexing agents inhibited its activity. Thiol agents and -SH group modifiers had no effect. The serine protease inhibitors, diisopropylfluorophosphate and phenyl methyl sulfonyl fluoride, did not inhibit. When histidine residues in the enzyme were modified by diethylpyrocarbonate, the peptidase activity was not affected, but the stimulatory effect of Co2+, Mn2+, and Zn2+ disappeared, suggesting the involvement of histidine residues in metal ion binding. These general characteristics of the peptidase activity were also exhibited by a 50 kD fragment obtained by limited -chymotrypsin digestion of purified butyrylcholinesterase. Under all assay conditions, the peptidase released the two amino acids, leucine and phenylalanine, from the carboxy terminus of Leu-enkephalin as verified by paper chromatography and HPLC analysis. The results suggested that the peptidase behaved like a serine, cysteine, thiol-independent metallopeptidase.  相似文献   

17.
The effects of blood plasma and some plasma constituents on several types of thrombin inhibitors were quite varied. Two active esters were rapidly destroyed by serum albumin; one of these reacted initially with Lys-199, the residue that is also acylated by aspirin. Of two sulfonyl fluorides one was unaffected by albumin, and the other bound reversibly to albumin; this binding was greater with albumin acetylated at Tyr-411 near the binding site for medium-chain fatty acids. The effects of a chloromethyl ketone were inhibited, apparently reversibly, by albumin but were practically abolished by glutathione. Of two potent reversible inhibitors one was unaffected by plasma constituents, while the other was over 10-fold less potent in plasma than in fibrinogen. The effect of plasma could be partially explained by binding to albumin and lipoproteins.  相似文献   

18.
Summary A Rhodococcus erythropolis strain was isolated from soil on the basis of its ability to use acetaminophen as the sole source of both carbon and energy for growth. When grown in a complex medium containing an anilide inducer compound, the bacterium exhibited aryl acylamidase (EC 3.5.1.13) activity. This activity was not subject to carbon or nitrogen repression by the growth medium constituents as the enzyme was present throughout the exponential growth phase. The anilide was converted to the corresponding aniline, which was not further degraded. The enzyme was partially purified by a variety of methods including a batch ion exchange procedure, column ion exchange chromatography and hydrophobic interaction chromatography. The enzyme had a maximum activity at around pH 8.0 and had a Km for acetaminophen of 0.11 mM. Electrochemical assays of aryl acylamidase activity are described. The enzyme is suitable for use as a reagent in the clinical diagnostic measurement of acetaminophen. Offprint requests to: P. A. Vaughan  相似文献   

19.
From Bacillus sphaericus ATCC 12123 an aryl acylamidase (EC 3.5.1.13) was purified to homogeneity by ion exchange chromatography, gel filtration, and polyacrylamide gel electrophoresis. The enzyme is inducible by various phenylamides of the acylanilide, phenylcarbamate, and methoxysubstituted phenylurea type. It has a molecular weight of 75,000. Enzyme activity was inhibited by sulfhydryl reagents, several metal ions, and 3,4-dichloroaniline (a product of linuron degradation). A requirement for divalent metal ions in enzyme activity could not be demonstrated. In the presence of 6 M urea an irreversible inactivation of the enzyme occurred. The hydrolysis of L-alanine-4-nitroanilide was competitively inhibited by puromycin.  相似文献   

20.
The reactivity of tyrosine residues in human serum albumin (HSA) was investigated by the nitration of the albumin with tetranitromethane. It could clearly be demonstrated that one tyrosine residue reacts faster and with about 20-fold higher reactivity than all others. This highly reactive tyrosine residue is located in fragment 299–585 of HSA and is supposed to be Tyr 411. This tyrosine residue is specifically involved in the indole and benzodiazepine binding site of HSA. Since some other amino acid residues, located in fragment 124–298, are also involved in the indole and benzodiazepine binding site, it is concluded that this important binding site of HSA depends on the tertiary structure of the albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号