首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 68-kDa protein that was tyrosine phosphorylated in the presence of Zn2+ and two proteins of 52 and 46 kDa that were tyrosine phosphorylated in the presence of Mg2+ were separated by column chromatography of a sheep platelet high speed supernatant on poly(Glu, Tyr)4:1 copolymer-Sepharose or tyrosine-Sepharose. Phosphorylation of the 68-kDa protein occurred maximally in the presence of Zn2+ while Mg2+ was ineffective. The kinases responsible for the Zn(2+)- and Mg(2+)-dependent tyrosine phosphorylation could also tyrosine phosphorylate poly(Glu, Tyr)4:1, histone, and angiotensin II with the same metal ion specificity. The two tyrosine kinase activities could be also distinguished by their differential response to polyamines and quercetin. Zn2+ stimulation did not appear to be due to the inhibition of a protein tyrosine phosphatase. Sephadex G-100 gel filtration of the fraction showing Zn(2+)-dependent tyrosine phosphorylation of the 68-kDa protein showed that the tyrosine kinase activity corresponded to a molecular mass of 68,000 and it showed a protein band of 68 kDa as detected by silver staining on sodium dodecyl sulfate-polyacrylamide gel.  相似文献   

2.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

3.
We describe purification of three different states of the 82-kDa K+/H+ antiporter from rat liver mitochondria. The denatured 82-kDa protein, identified by its selective labeling with [14C]dicyclohexylcarbodiimide (DCCD), was purified by preparative two-dimensional gel electrophoresis. This purified product was used to raise and immunopurify monospecific polyclonal antibodies. Western blot analysis showed that the [14C] DCCD-labeled 82-kDa protein is not a DCCD-crosslinked product. The native, [14C]DCCD-labeled, 82-kDa protein was purified by (NH4)2SO4 fractionation and column chromatography, using 14C labeling and gel electrophoresis to track the protein. The native, non-DCCD-labeled 82-kDa protein was purified by similar procedures, using immunopurified antibodies to track the protein. DCCD binding had no effect on chromatographic behavior of the antiporter protein. This protocol resulted in purification of the 82-kDa protein to apparent homogeneity. The purified, native 82-kDa protein was reconstituted into proteoliposomes and assayed for K+ transport with the new fluorescent probe, PBFI. K+ transport was electroneutral and was inhibited by DCCD, Mg2+, and timolol. The turnover number for K+ transport was about 1000 s-1, very similar to the value previously estimated in intact mitochondria.  相似文献   

4.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

5.
The 90-kDa heat shock protein (hsp-90) is an abundant cytosolic protein believed to play a role in maintenance of protein trafficking and closely associated with several steroid hormone receptors. Incubation of highly purified hsp-90 with [gamma-32P]ATP results in its autophosphorylation on serine residues. There are several lines of evidence which suggest that this activity is due to a kinase intrinsic to hsp-90 rather than some closely associated protein kinases: 1) the phosphorylation persists after the removal of casein kinase II by heparin chromatography and after immunoprecipitation of hsp-90 with anti-hsp-90 antibodies. 2) The approximate kM for ATP of the reaction is 0.16 mM, higher than that of many other protein kinases. 3) Phosphorylation is not affected by a number of activators and inhibitors of other known kinases which might associate with hsp-90. 4) The phosphorylation displays a unique cation dependence being most active in the presence of Ca2+ and practically inactive with Mg2+, although the autophosphorylation in the presence of Mg2+ is activated by histones and polyamines. 5) The activity is remarkably heat-stable; incubation of hsp-90 for 20 min at 95 degrees C results in only a 60% decrease in autophosphorylation. 6) Finally, and most importantly, purified hsp-90 can be labeled with azido-ATP and it is able to bind to ATP-agarose. The binding shows similar cation dependence to the autophosphorylation. These data are in agreement with the presence of a consensus sequence for ATP binding sites in the primary structure of the protein similar to that observed in the 70-kDa heat-shock proteins. Our data suggest the 90-kDa heat shock protein possesses an enzymatic activity analogous in many respects to the similar activity of the 70-kDa heat shock proteins. This may represent an important, previously unrecognized function of hsp-90.  相似文献   

6.
A 110-kDa protein present in chicken intestinal brush-border microvilli is believed to laterally link the actin filament bundle that forms the structural core of the microvilli with the microvillar plasma membrane. We have purified a 110-kDa protein to greater than 95% homogeneity by extraction of brush borders with solution containing 0.6 M KCl and 5 mM ATP, followed by gel filtration chromatography, sedimentation as a complex with exogenous actin, and hydroxylapatite chromatography. The 110-kDa protein-calmodulin complex bound F-actin in the absence but not the presence of ATP and had K+,EDTA-ATPase (0.2 mumol/min/mg) and Ca2+-ATPase (0.2 mumol/min/mg) activities and Mg2+-ATPase activity (0.03 mumol/min/mg) that was not activated by F-actin. The actin-binding and ATPase activities of the complex were similar to those of purified brush-border myosin. However, immunoblot analysis showed no reactivity between the 110-kDa protein and polyclonal antibody against purified chicken brush-border myosin. Also, peptide maps of 110-kDa protein and myosin obtained by limited proteolysis with chymotrypsin and Staphylococcus aureus V8 protease had few, if any, peptides in common. Immunoblot analysis also showed that myosin heavy chain was stable under the conditions of the preparation.  相似文献   

7.
Initiation of flagellar motility in spermatozoa of the rainbow trout, Salmo gairdneri, is closely related to phosphorylation of a protein of molecular mass 15 kDa (Morisawa, M., and Hayashi, H. (1986) Biomed. Res. 6, 181-184). We have been able to solubilize the protein and its kinase and then construct an assay system in vitro for the phosphorylation of the 15-kDa protein. In vitro, the protein was phosphorylated in a cAMP-dependent manner. The phosphorylation absolutely required the presence of Mg2+ ions. at millimolar concentrations, but not of Ca2+ ions. The amino acid residue which was phosphorylated in the 15-kDa protein was tyrosine. The 15-kDa protein was purified to near homogeneity by affinity chromatography on a column of adenosine nucleotides conjugated to Eupergit and ion-exchange chromatography on DEAE-cellulose. The effects of synthetic inhibitors of protein kinase on the phosphorylation of the 15-kDa protein were also studied.  相似文献   

8.
Reactive disulfide reagents (RDSs) with a biotin moiety have been synthesized and found to cause Ca2+ release from sarcoplasmic reticulum (SR) vesicles. The RDSs oxidize SH sites on SR proteins via a thiol-disulfide exchange, with the formation of mixed disulfide bonds between SR proteins and biotin. Biotinylated RDSs identified a 106-kDa protein which was purified by biotin-avidin chromatography. Disulfide reducing agents, like dithiothreitol, reverse the effect of RDSs and thus promoted active re-uptake of Ca2+ and dissociated biotin from the labeled protein indicating that biotin was covalently linked to the 106-kDa protein via a disulfide bond. Several lines of evidence indicate that this protein is not Ca2+, Mg2+-ATPase and is not a proteolytic fragment or a subunit of the 400-kDa Ca2+-ryanodine receptor complex (RRC). Monoclonal antibodies against the ATPase did not cross-react with the 106-kDa protein, and polyclonal antibodies against the 106-kDa did not cross-react with either the ATPase or the 400-kDa RRC. RDSs did not label the 400-kDa RRC with biotin. Linear sucrose gradients used to purify the RRC show that the 106-kDa protein migrated throughout 5-20% linear sucrose gradients, including the high sucrose density protein fractions containing 400-kDa RRC. Protease inhibitors diisopropylfluorophosphate used to prevent proteolysis of 400-kDa proteins did not alter the migration of 106-kDa in sucrose gradients nor the patterns of biotin labeling of the 106-kDa protein. Incorporation of highly purified 106-kDa protein (free of RRC) in planar bilayers revealed cationic channels with large Na+ (gNa+ = 375 +/- 15 pS) and Ca2+ (gCa2+ = 107.7 +/- 12 pS) conductances which were activated by micromolar [Ca2+]free or millimolar [ATP] and blocked by micromolar ruthenium red or millimolar [Mg2+]. Thus, the SR contains a sulfhydryl-activated 106-kDa Ca2+ channel with apparently similar characteristics to the 400-kDa "feet" proteins.  相似文献   

9.
Tang Jun  Wu Shupin  Bai Juan  Sun Daye 《Planta》1996,198(4):510-516
A 21-kDa calmodulin (CaM)-binding protein and a 19-kDa calmodulin-binding protein were detected in 0.1 M CaCl2 extracts of Angelica dahurica L. suspension-cultured cells and carrot (Daucus carota L.) suspension-cultured cells, respectively, using a biotinylated cauliflower CaM gel-overlay technique in the presence of 1 mM Ca2+. No bands, or very weak bands, were shown on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels overlayed with biotinylated cauliflower CaM when 1 mM Ca2+ was replaced by 5 mM EGTA, indicating that the binding of these two CaM-binding proteins to CaM was dependent on Ca2+. Less 21-kDa CaM-binding protein was found in culture medium of Angelica dahurica suspension cells; however, a 21-kDa protein was abundant in the cell wall. We believe that the 21-kDa CaM-binding protein is mainly in the cell wall of Angelica dahurica. Based on its reaction with periodic acid-Schiff (PAS) reagent, this 21-kDa protein would appear to be a glycoprotein. The 21-kDa CaM-binding protein was purified by a procedure including Sephadex G-100 gel filtration and CM-Sepharose cation-exchange column chromatography. The purity reached 91% according to gel scanning. The purified 21-kDa CaM-binding protein inhibited the activity of CaM-dependent NAD kinase and the degree of inhibition increased with augmentation of the 21-kDa protein, which appeared to be the typical characteristic of CaM-binding protein.  相似文献   

10.
UDP-Glc:dolichol phosphate glucosyltransferase from lactating rat mammary gland has been partially purified by a combination of (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography on DEAE-TSK, and affinity chromatography. The partially purified enzyme exhibited several protein bands when examined by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions; among these, a 35-kDa polypeptide was quite prominent and appeared to be enriched during purification. Photoaffinity labeling of the partially purified enzyme preparation with 5-azido-[beta-32P]UDP-Glc identified a 35-kDa polypeptide. Labeling of a solubilized enzyme preparation from crude and stripped microsomes also revealed a 35-kDa band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Photoinsertion of the probe in this polypeptide is enhanced by the presence of dolichol phosphate and Mg2+. Competition studies with UDP-Glc, UDP-glucuronic acid, other sugar nucleotides, and Glc-1-phosphate provide evidence to validate the specificity of photoaffinity labeling. These studies indicate that this 35-kDa polypeptide is involved in the synthesis of dolichol-P-Glc in rat mammary tissue. The possibility that this polypeptide may represent glucosyltransferase has been discussed.  相似文献   

11.
Inorganic pyrophosphatase was purified from the vacuolar membrane of mung bean hypocotyl tissue by solubilization with lysophosphatidylcholine and QAE-Toyopearl chromatography. The molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 73,000 daltons. Among the amino-terminal first 30 amino acids are 25 nonpolar hydrophobic residues. For maximum activity, the purified pyrophosphatase required 1 mM Mg2+ and 50 mM K+. The enzyme reaction was stimulated by exogenous phospholipid in the presence of detergent. Excess pyrophosphate as well as excess magnesium inhibited the pyrophosphatase. The enzyme reaction was strongly inhibited by ATP, GTP, and CTP at 2 mM, and the inhibition was reversed by increasing the Mg2+ concentration. An antibody preparation raised in a rabbit against the purified enzyme inhibited both the reactions of pyrophosphate hydrolysis of the purified preparation and the pyrophosphate-dependent H+ translocation in the tonoplast vesicles. N,N'-Dicyclohexylcarbodiimide became bound to the purified pyrophosphatase and inhibited the reaction of pyrophosphate hydrolysis. It is concluded that the 73-kDa protein in vacuolar membrane functions as an H+-translocating inorganic pyrophosphatase.  相似文献   

12.
Human monoblast U937 cells contain a soluble phospholipase A2 (PLA2) that is activated over the range of 150-600 nM Ca2+ and is stable only at neutral pH. We have purified this PLA2 over 34,000-fold to near homogeneity using sequential ion exchange, hydrophobic interaction, and gel filtration chromatography steps. The protein has a Mr of approximately 100,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and an isoelectric point of 5.1. Four lines of evidence indicate that this 100-kDa polypeptide represents the PLA2. (i) The intensity of staining of the 100-kDa protein was proportional to the degree of purification of PLA2 activity, (ii) the relative staining intensity of the 100-kDa protein precisely paralleled the elution profile of PLA2 activity during chromatography steps, (iii) the PLA2 activity recovered from a nondenaturing gel (greater than 60% of the total activity applied) coincided exactly with the major high molecular weight protein detected by silver staining, and (iv) monoclonal antibodies against the 100-kDa protein immunoprecipitated the PLA2. We conclude that the cytosolic PLA2 isolated from U937 cells represents a novel, high molecular weight PLA2 responding to physiological (intracellular) changes in Ca2+ concentration and therefore may play a critical role in cellular signal transduction processes and the biosynthesis of lipid mediators.  相似文献   

13.
Ca2+-ATPase of skeletal muscle sarcolemma has been isolated and purified. It is prepared from salt extract of sarcolemma by ammonium sulfate fractionation and further purified by gel chromatography on Sepharose 4B. The purity of preparations was evaluated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. It has been shown that Ca2+-ATPase possesses the same mobility as skeletal muscle myosin under gel chromatography on Sepharose 4B and the same mobility as myosin heavy chains in sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Membrane protein binds to rabbit skeletal muscle actin, and this complex dissociates by ATP. Interaction with actin does not change Ca2+- or Mg2+-stimulated ATPase activity. Enzyme has only one pH optimum at 7,0-7,6. Membrane protein is highly specified to calcium--ATPase activity in the presence of Mn2+ is 10% and in the presence of Sr2+, Mg2+ or Co2+ are 3-5% of the activity in the presence of Ca2+. Other nucleoside triphosphate (UTP and ITP) are hydrolyzed at lower rates than is ATP.  相似文献   

14.
Previous studies have shown that the purified rat liver glucocorticoid receptor (GR) has a protein kinase activity. In this report we show that the GR-associated kinase can be partially separated from the 94-kDa steroid-binding protein by DEAE-Sepharose chromatography. The kinase elutes from the column at a higher salt concentration than the 94-kDa GR protein. This GR copurifying protein kinase phosphorylates basic substrates such as various histone fractions and protamine. The phosphorylation occurs in the presence of Mg2+ ions, and is not supported by Ca2+ ions. The amino acid residues phosphorylated by the kinase are threonine and serine. This kinase also phosphorylates the 94-kDa GR protein and thus might be of physiological relevance for the GR function.  相似文献   

15.
The activating kinase of protein phosphatase 1I is distributed in approximately equal amounts between the cytosolic and particulate fractions of bovine brain homogenates. Both species of this protein kinase have been purified to near homogeneity. The cytosolic form, purified about 7,000-fold, has an apparent Mr = approximately 75,000, as estimated by gel filtration chromatography on Sephacryl S-300. The enzyme contains two subunits, with apparent Mr = 52,000 and 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both subunits undergo phosphorylation when the enzyme is incubated with Mg2+ and [gamma-32P]ATP. Peptide maps of the two subunits are different, and rabbit antibodies to the 52-kDa subunit show only very minor cross-reactivity to the 46-kDa subunit. These observations indicate that the two subunits are different. The species of protein phosphatase 1I activating kinase that is associated with the membrane fraction has an apparent Mr = approximately 105,000 as estimated by gel filtration. This species also contains two subunits, with apparent Mr = 52,000 and 46,000, the properties of which are very similar, if not identical, to those of the two subunits comprising the cytosolic form of the protein kinase.  相似文献   

16.
A novel Ca2+-dependent protein kinase from Paramecium tetraurelia   总被引:3,自引:0,他引:3  
The ciliated protozoan Paramecium tetraurelia contained two protein kinase activities that were dependent on Ca2+. We purified one of the enzymes to homogeneity by Ca2+-dependent affinity chromatography on phenyl-Sepharose and ion exchange chromatography. The purified enzyme contained polypeptides of 50 and 55 kDa, with the 50-kDa species predominant. From its Stokes radius (32 A) and sedimentation coefficient (3.9 S), we calculated a native molecular weight of 51,000, suggesting that the active form is a monomer. Its specific activity was 65-130 nmol X min-1 X mg-1 and the Km for ATP was 17-35 microM, depending on the exogenous substrate used. Kinase activity was completely dependent upon Ca2+; half-maximal activation occurred at approximately 1 microM free Ca2+ at pH 7.2. Phosphatidylserine and diacylglycerol did not stimulate activity, nor did the addition of purified Paramecium calmodulin. The enzyme phosphorylated casein and histones, forming primarily phosphoserine and phosphothreonine, respectively. It also catalyzed its own phosphorylation in a Ca2+-dependent reaction; the half-maximal rate of autophosphorylation occurred at approximately 1-1.5 microM free Ca2+, and both the 50- and 55-kDa species were autophosphorylated. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renaturation in situ, the 50-kDa protein retained its Ca2+-dependent ability to phosphorylate casein, suggesting that Ca2+ interacts directly with this polypeptide. This was confirmed by direct binding studies; when the enzyme was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis transferred to nitrocellulose, and renatured, there was 45Ca2+-binding in situ to both the 50- and 55-kDa polypeptides. The Paramecium enzyme appears to be a new and unique type of Ca2+-dependent protein kinase.  相似文献   

17.
The clpB gene in Escherichia coli encodes a heat-shock protein that is a close homolog of the clpA gene product. The latter is the ATPase subunit of the multimeric ATP-dependent protease Ti (Clp) in E. coli, which also contains the 21-kDa proteolytic subunit (ClpP). The clpB gene product has been purified to near homogeneity by DEAE-Sepharose and heparin-agarose column chromatographies. The purified ClpB consists of a major 93-kDa protein and a minor 79-kDa polypeptide as analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Upon gel filtration on a Superose-6 column, it behaves as a 350-kDa protein. Thus, ClpB appears to be a tetrameric complex of the 93-kDa subunit. The purified ClpB has ATPase activity which is stimulated 5-10-fold by casein. It is also activated by insulin, but not by other proteins, including globin and denatured bovine serum albumin. ClpB cleaves adenosine 5'-(alpha,beta-methylene)-triphosphate as rapidly as ATP, but not adenosine 5'-(beta,gamma-methylene)-triphosphate. GTP, CTP, and UTP are hydrolyzed 15-25% as well as ATP. ADP strongly inhibits ATP hydrolysis with a Ki of 34 microM. ClpB has a Km for ATP of 1.1 mM, and casein increases its Vmax for ATP without affecting its Km. A Mg2+ concentration of 3 mM is necessary for half-maximal ATP hydrolysis. Mn2+ supports ATPase activity as well as Mg2+, and Ca2+ has about 20% their activity. Anti-ClpB antiserum does not cross-react with ClpA nor does anti-ClpA antiserum react with ClpB. In addition, ClpB cannot replace ClpA in supporting the casein-degrading activity of ClpP. Thus, ClpB is distinct from ClpA in its structural and biochemical properties despite the similarities in their sequences.  相似文献   

18.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

19.
G C Machray  J Bonner 《Biochemistry》1981,20(19):5466-5470
A deoxyribonucleic acid (DNA) endonucleolytic activity has been purified from a 0.3 M KCl extract of rat liver chromatin by a combination of selective precipitation and ion-exchange and gel filtration chromatography. The purified protein has a molecular weight of 35 000 as determined by Sephadex G-200 gel filtration and sodium dodecyl sulfate-acrylamide gel electrophoresis. The nuclease activity is stimulated by the addition of Mg2+ and thus may represent the Mg2+-activated DNase endogenous to chromatin. The purified enzyme has the ability to make both single-strand nicks and double-strand cuts in DNA.  相似文献   

20.
A polycation-stimulated (PCS) protein phosphatase was isolated in high yield (280 micrograms/100 g ovaries) from Xenopus laevis oocytes through a procedure involving a tyrosine-agarose hydrophobic chromatography. The 220-kDa enzyme contains a 35-kDa and a 62-kDa subunit. It was identified as the low-Mr polycation-stimulated (PCSL) protein phosphatase. The labile p-nitrophenyl phosphatase activity, copurifying with the phosphorylase phosphatase activity, can be increased severalfold by preincubating the purified enzyme with ATP, its analogues or PPi. This activation is time-dependent and accompanied by a parallel decrease of the phosphorylase phosphatase activity. Although the stimulation was antagonized by metal ions during the preincubation, the basal and ATP-stimulated p-nitrophenyl phosphatase requires Mg2+ or Mn2+ in the assay, with pH optima of 8.5-9 and 7.5 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号