首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
The cleavage specificities of the RNase P holoenzymes from Escherichia coli and the yeast Schizosaccharomyces pombe and of the catalytic M1 RNA from E. coli were analyzed in 5'-processing experiments using a yeast serine pre-tRNA with mutations in both flanking sequences. The template DNAs were obtained by enzymatic reactions in vitro and transcribed with phage SP6 or T7 RNA polymerase. The various mutations did not alter the cleavage specificity of the yeast RNase P holoenzyme; cleavage always occurred predominantly at position G + 1, generating the typical seven base-pair acceptor stem. In contrast, the specificity of the prokaryotic RNase P activities, i.e. the catalytic M1 RNA and the RNase P holoenzyme from E. coli, was influenced by some of the mutated pre-tRNA substrates, which resulted in an unusual cleavage pattern, generating extended acceptor stems. The bases G - 1 and C + 73, forming the eighth base pair in these extended acceptor stems, were an important motif in promoting the unusual cleavage pattern. It was found only in some natural pre-tRNAs, including tRNA(SeCys) from E. coli, and tRNAs(His) from bacteria and chloroplasts. Also, the corresponding mature tRNAs in vivo contain an eight base pair acceptor stem. The presence of the CCA sequence at the 3' end of the tRNA moiety is known to enhance the cleavage efficiency with the catalytic M1 RNA. Surprisingly, the presence or absence of this sequence in two of our substrate mutants drastically altered the cleavage specificity of M1 RNA and of the E. coli holoenzyme, respectively. Possible reasons for the different cleavage specificities of the enzymes, the influence of sequence alterations and the importance of stacking forces in the acceptor stems are discussed.  相似文献   

6.
The intron-containing proline tRNAUGG genes in Saccharomyces cerevisiae can mutate to suppress +1 frameshift mutations in proline codons via a G to U base substitution mutation at position 39. The mutation alters the 3' splice junction and disrupts the bottom base-pair of the anticodon stem which presumably allows the tRNA to read a four-base codon. In order to understand the mechanism of suppression and to study the splicing of suppressor pre-tRNA, we determined the sequences of the mature wild-type and mutant suppressor gene products in vivo and analyzed splicing of the corresponding pre-tRNAs in vitro. We show that a novel tRNA isolated from suppressor strains is the product of frameshift suppressor genes. Sequence analysis indicated that suppressor pre-tRNA is spliced at the same sites as wild-type pre-tRNA. The tRNA therefore contains a four-base anticodon stem and nine-base anticodon loop. Analysis of suppressor pre-tRNA in vitro revealed that endonuclease cleavage at the 3' splice junction occurred with reduced efficiency compared to wild-type. In addition, reduced accumulation of mature suppressor tRNA was observed in a combined cleavage and ligation reaction. These results suggest that cleavage at the 3' splice junction is inefficient but not abolished. The novel tRNA from suppressor strains was shown to be the functional agent of suppression by deleting the intron from a suppressor gene. The tRNA produced in vivo from this gene is identical to that of the product of an intron+ gene, indicating that the intron is not required for proper base modification. The product of the intron- gene is a more efficient suppressor than the product of an intron+ gene. One interpretation of this result is that inefficient splicing in vivo may be limiting the steady-state level of mature suppressor tRNA.  相似文献   

7.
8.
9.
Little is known about the conservation of determinants for the identities of tRNAs between organisms. We showed previously that Escherichia coli tyrosine tRNA synthetase can charge the Saccharomyces cerevisiae mitochondrial tyrosine tRNA in vivo, even though there are substantial sequence differences between the yeast mitochondrial and bacterial tRNAs. The S. cerevisiae cytoplasmic tyrosine tRNA differs in sequence from both its yeast mitochondrial and E. coli counterparts. To test whether the yeast cytoplasmic tyrosyl-tRNA synthetase recognizes the E. coli tRNA, we expressed various amounts of an E. coli tyrosine tRNA amber suppressor in S. cerevisiae. The bacterial tRNA did not suppress any of three yeast amber alleles, suggesting that the yeast enzymes retain high specificity in vivo for their homologous tRNAs. Moreover, the nucleotides in the sequence of the E. coli suppressor that are not shared with the yeast cytoplasmic tyrosine tRNA do not create determinants which are efficiently recognized by other yeast charging enzymes. Therefore, at least some of the determinants that influence in vivo recognition of the tyrosine tRNA are specific to the cell compartment and organism. In contrast, expression of the cognate bacterial tyrosyl-tRNA synthetase together with the bacterial suppressor tRNA led to suppression of all three amber alleles. The bacterial enzyme recognized its substrate in vivo, even when the amount of bacterial tRNA was less than about 0.05% of that of the total cytoplasmic tRNA.  相似文献   

10.
Oligonucleotide-directed mutagenesis was used to generate amber, ochre and opal suppressors from cloned Arabidopsis and Nicotiana tRNA(Tyr) genes. The nonsense suppressor tRNA(Tyr) genes were efficiently transcribed in HeLa and yeast nuclear extracts, however, intron excision from all mutant pre-tRNAs(Tyr) was severely impaired in the homologous wheat germ extract as well as in the yeast in vitro splicing system. The change of one nucleotide in the anticodon of suppressor pre-tRNAs leads to a distortion of the potential intron-anticodon interaction. In order to demonstrate that this caused the reduced splicing efficiency, we created a point mutation in the intron of Arabidopsis tRNA(Tyr) which affected the interaction with the wild-type anticodon. As expected, the resulting pre-tRNA was also inefficiently spliced. Another mutation in the intron, which restored the base-pairing between the amber anticodon and the intron of pre-tRNA(Tyr), resulted in an excellent substrate for wheat germ splicing endonuclease. This type of amber suppressor tRNA(Tyr) gene which yields high levels of mature tRNA(Tyr) should be useful for studying suppression in higher plants.  相似文献   

11.
12.
Predicted single-stranded structure at the 3' splice site is a conserved feature among intervening sequences (IVSs) in eukaryotic nuclear tRNA precursors. The role of 3' splice site structure in splicing was examined through hexanucleotide insertions at a central intron position in the Saccharomyces cerevisiae tRNA gene. These insertions were designed to alter the structure at the splice site without changing its sequence. Endonuclease cleavage of pre-tRNA substrates was then measured in vitro, and suppressor activity was examined in vivo. A precursor with fully double-stranded structure at the 3' splice site was not cleaved by endonuclease. The introduction of one unpaired nucleotide at the 3' splice site was sufficient to restore cleavage, although at a reduced rate. We have also observed that guanosine at the antepenultimate position provides a second consensus feature among IVSs in tRNA precursors. Point mutations at this position were found to affect splicing although there was no specific requirement for guanosine. These and previous results suggest that elements of secondary and/or tertiary structure at the 3' end of IVSs are primary determinants in pre-tRNA splice site utilization whereas specific sequence requirements are limited.  相似文献   

13.
14.
One of the essential maturation steps to yield functional tRNA molecules is the removal of 3'-trailer sequences by RNase Z. After RNase Z cleavage the tRNA nucleotidyl transferase adds the CCA sequence to the tRNA 3'-terminus, thereby generating the mature tRNA. Here we investigated whether a terminal CCA triplet as 3'-trailer or embedded in a longer 3'-trailer influences cleavage site selection by RNase Z using three activities: a recombinant plant RNase Z, a recombinant archaeal RNase Z and an RNase Z active wheat extract. A trailer of only the CCA trinucleotide is left intact by the wheat extract RNase Z but is removed by the recombinant plant and archaeal enzymes. Thus the CCA triplet is not recognized by the RNase Z enzyme itself, but rather requires cofactors still present in the extract. In addition, we investigated the influence of acceptor stem length on cleavage by RNase Z using variants of wild-type tRNATyr. While the wild type and the variant with 8 base pairs in the acceptor stem were processed efficiently by all three activities, variants with shorter and longer acceptor stems were poor substrates or were not cleaved at all.  相似文献   

15.
N Stange  H Beier 《The EMBO journal》1987,6(9):2811-2818
An intron-containing tobacco tRNA(Tyr) precursor synthesized in a HeLa cell nuclear extract has been used to develop a cell-free processing and splicing system from wheat germ. Removal of 5' and 3' flanking sequences, accurate excision of the intervening sequence, ligation of the resulting tRNA halves, addition of the 3'-terminal CCA sequence and modification of seven nucleosides were achieved in appropriate wheat germ S23 and S100 extracts. The maturation of pre-tRNA(Tyr) in these extracts resembles the pathway observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast in that processing of the flanks precedes intron excision. Most of the modified nucleosides (m2(2) G, psi 35, psi 55, m7G and m1A) are introduced into the intron-containing pre-tRNA with mature ends, whereas two others (m1G and psi 39) are only found in the mature tRNA(Tyr). Processing and splicing proceed very efficiently in the wheat germ extracts, leading to complete maturation of 5' and 3' ends followed by about 65% conversion to mature tRNA(Tyr) under our standard conditions. The activity of the wheat germ endonuclease is stimulated 3-fold by the non-ionic detergent Triton X-100. All previous attempts to demonstrate the presence of a splicing endonuclease in wheat germ had failed (Gegenheimer et al., 1983). Hence, this is the first cell-free plant extract which supports pre-tRNA processing and splicing in vitro.  相似文献   

16.
It has been proposed that yeast and Xenopus splicing endonucleases initially recognize features in the mature tRNA domain common to all tRNA species and that the sequence and structure of the intron are only minor determinants of splice-site selection. In accordance with this postulation, we show that yeast endonuclease splices heterologous pre-tRNA(Tyr) species from vertebrates and plants which differ in their mature domains and intron secondary structures. In contrast, wheat germ splicing endonuclease displays a pronounced preference for homologous pre-tRNA species; an extensive study of heterologous substrates revealed that neither yeast pre-tRNA species specific for leucine, serine, phenylalanine and tyrosine nor human and Xenopus pre-tRNA(Tyr) species were spliced. In order to identify the elements essential for pre-tRNA splicing in plants, we constructed chimeric genes coding for tRNA precursors with a plant intron secondary structure and with mature tRNA(Tyr) domains from yeast and Xenopus, respectively. The chimeric pre-tRNA comprising the mature tRNA(Tyr) domain from Xenopus was spliced efficiently in wheat germ extract, whereas the chimeric construct containing the mature tRNA(Tyr) domain from yeast was not spliced at all. These data indicate that intron secondary structure contributes to the specificity of plant splicing endonuclease and that unique features of the mature tRNA domain play a dominant role in enzyme-substrate recognition. We further investigated the influence of specific nucleotides in the mature domain on splicing by generating a number of mutated pre-tRNA species. Our results suggest that nucleotides located in the D stem, i.e. in the center of the pre-tRNA molecule, are recognition points for plant splicing endonuclease.  相似文献   

17.
A Nuclear Import Pathway for a Protein Involved in tRNA Maturation   总被引:15,自引:2,他引:13       下载免费PDF全文
A limited number of transport factors, or karyopherins, ferry particular substrates between the cytoplasm and nucleoplasm. We identified the Saccharomyces cerevisiae gene YDR395w/SXM1 as a potential karyopherin on the basis of limited sequence similarity to known karyopherins. From yeast cytosol, we isolated Sxm1p in complex with several potential import substrates. These substrates included Lhp1p, the yeast homologue of the human autoantigen La that has recently been shown to facilitate maturation of pre-tRNA, and three distinct ribosomal proteins, Rpl16p, Rpl25p, and Rpl34p. Further, we demonstrate that Lhp1p is specifically imported by Sxm1p. In the absence of Sxm1p, Lhp1p was mislocalized to the cytoplasm. Sxm1p and Lhp1p represent the karyopherin and a cognate substrate of a unique nuclear import pathway, one that operates upstream of a major pathway of pre-tRNA maturation, which itself is upstream of tRNA export in wild-type cells. In addition, through its association with ribosomal proteins, Sxm1p may have a role in coordinating ribosome biogenesis with tRNA processing.  相似文献   

18.
19.
Conversion of a nascent precursor tRNA to a mature functional species is a multipartite process that involves the sequential actions of several processing and modifying enzymes. La is the first protein to interact with pre-tRNAs in eukaryotes. An opal suppressor tRNA served as a functional probe to examine the activities of yeast and human (h)La proteins in this process in fission yeast. An RNA recognition motif and Walker motif in the metazoan-specific C-terminal domain (CTD) of hLa maintain pre-tRNA in an unprocessed state by blocking the 5'-processing site, impeding an early step in the pathway. Faithful phosphorylation of hLa on serine 366 reverses this block and promotes tRNA maturation. The results suggest that regulation of tRNA maturation at the level of RNase P cleavage may occur via phosphorylation of serine 366 of hLa.  相似文献   

20.
Structure of a yeast non-initiating methionine-tRNA gene.   总被引:8,自引:3,他引:5       下载免费PDF全文
4 to 8 kb Hind III fragments of yeast DNA were cloned into pBR322. One of these clones (pY6m3) containing a single tRNA3Met gene has been characterized in detail. The DNA sequence of the structural gene is colinear with the tRNA sequence, which means that in this case no intervening sequence is present. The 5'-leader and 3'-trailer sequences have also been determined. The 5'-flanking region can be folded up into possible secondary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号