首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stolbur phytoplasma ‘Candidatus Phytoplasma solani’ is responsible for the grapevine disease ‘bois noir’ affecting a number of wine‐growing areas in Europe. Transmission of stolbur phytoplasma to different laboratory hosts can be difficult due to the requirement of transmitting insect vectors or parasite plants. Here, heterologous grafting was used as an alternative technique for transmission of common and strongly symptomatic stolbur genotypes CPsM4_At1 and CPsM4_At6 of ‘Ca. P. solani’ to experimental host plants such as Catharanthus roseus and tomato making phytoplasma strains more accessible for molecular and experimental investigations in different plant species. Transmission was confirmed by quantitative PCR, microscopy and nested PCR followed by marker gene sequencing. In our study, the transmission of different genotypes of ‘Ca. P. solani’ resulted in distinguishable symptom development in the laboratory host C. roseus. Symptom development in grafted rootstock was observed three to 7 weeks after heterologous grafting. Survival of the graft unit was influenced by the presence of ‘Ca. P. solani’ in the scions and was clearly reduced in phytoplasma free scion – rootstock combinations.  相似文献   

2.
Chrysanthemum yellows (CY) phytoplasma has been transmitted with three leafhopper species: Euscelidius variegatus (Kirschbaum), Macrosteles quadripunctulatus (Kirschbaum) and Euscelis incisus (Kirschbaum): the first two species are reported as CY phytoplasma vectors for the first time. Leafhoppers were allowed to acquire the pathogen from the following source plants: Apium graveolens L., Catharanthus roseus L., Chrysanthemum carinatum Schousboe L. and C. frutescens L. DNA extracted from healthy or inoculative leafhoppers-exposed plants were analyzed by dot-blot and Southern hybridizations with a molecular probe constructed onto a fragment of European aster yellows phytoplasma DNA. The three leafhopper species were able to transmit CY phytoplasma after acquisition on chrysanthemum, but only M. quadripunctulatus and E. variegatus transmitted after feeding on periwinkle, and none acquired it from celery. All plant species tested were susceptible to CY, but while chrysanthemum and periwinkle were suitable for both inoculation and acquisition, celery did not seem to be a good source of phytoplasma for further inoculations. It is concluded that host plants influence leafhoppers' vectoring ability, possibly due to the different feeding behaviour of the insects on diverse plant species. Since CY, like several other phytoplasmas, can be transmitted by different insect species, it is likely that a close transmission specificity probably does not exist between phytoplasmas and their leafhopper vectors.  相似文献   

3.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   

4.
Aim: To elucidate the possible mechanism of phytoplasma elimination from periwinkle shoots caused by indole‐3‐butyric acid (IBA) treatment. Methods and Results: It has been shown that a transfer of in vitro‐grown phytoplasma‐infected Catharanthus roseus (periwinkle) plantlets from medium supplemented with 6‐benzylaminopurine (BA) to one supplemented with IBA can induce remission of symptoms and even permanent elimination of ‘Candidatus Phytoplasma asteris’ reference strain HYDB. Endogenous auxin levels and general methylation levels in noninfected periwinkles, periwinkles infected with two ‘Candidatus Phytoplasma’ species and phytoplasma‐recovered periwinkles were measured and compared. After the transfer from cytokinin‐ to auxin‐containing media, healthy shoots maintained their phenotype, methylation levels and hormone concentrations. Phytoplasma infection caused a change in the endogenous indole‐3‐acetic acid to IBA ratio in periwinkle shoots infected with two ‘Candidatus Phytoplasma’ species, but general methylation was significantly changed only in shoots infected with ‘Ca. P. asteris’, which resulted in the only phytoplasma species eliminated from shoots after transfer to IBA‐containing medium. Both phytoplasma infection and treatment with plant growth regulators influenced callose deposition in phloem tissue, concentrations of photosynthetic pigments and soluble proteins, H2O2 levels and activities of catalase (CAT) and ascorbate peroxidase (APX). Conclusion: Lower level of host genome methylation in ‘Ca. P. asteris’‐infected periwinkles on medium supplemented with BA was significantly elevated after IBA treatment, while IBA treatment had no effect on cytosine methylation in periwinkles infected with ‘Candidatus Phytoplasma ulmi’ strain EY‐C. Significance and Impact of the Study: Hormone‐dependent recovery is a distinct phenomenon from natural recovery. As opposed to spontaneously recovered plants in which elevated peroxide levels and differential expression of peroxide‐related enzymes were observed, in hormone‐dependent recovery changes in global host genome, methylation coincide with the presence/absence of phytoplasma.  相似文献   

5.
Phytoplasmas belonging to the 16S rDNA subgroups IB and IC were found in five cyclamen (Cyclamen persicum L.) plants showing virescence and yellow stunted leaves and one plant showing phyllody, rolled and thickened leaves, respectively. Two cyclamens, representing the two syndromes, were chosen as source plants for transmission trials in which three leafhopper species, known as vectors of IB and IC subgroup phytoplasmas, were used to inoculate cyclamen and periwinkle [Catharanthus roseus (L.) G. Don] test plants. Out of 366 tested plants only one periwinkle exposed to Euscelis incisus was found harbouring a 16Sr‐IB phytoplasma. Out of 60 tested vector insects, only one adult of Macrosteles quadripunctulatus and two of E. incisus fed on 16Sr‐IB source cyclamen gave a positive amplification signal in nested PCR. This extremely low level of transmission to both cyclamen and the very susceptible periwinkle strongly suggests that cyclamen, commonly found infected in crops, is an unsuitable species for phytoplasma acquisition and can be regarded as a dead‐end host plant for phytoplasmas belonging to both IB and IC subgroups. Indications for glasshouse management are drawn from these findings. Among the leafhoppers investigated E. incisus falls most under suspicion since it feeds better than the others on cyclamen, was able to transmit the disease to one periwinkle plant, and IB phytoplasmas were detected in two individuals.  相似文献   

6.
As phytoplasmas are non cultivable micro-organisms, the research on phytoplasmal diseases can only be achieved with infected hosts. Biological indexing (by grafting) is the simplest detection method for phytoplasmal diseases. We tested four different grafting techniques for inoculation of apple trees or periwinkles in greenhouse, including whip graft, bark graft, budding and chip-budding. All techniques were tested on apple trees (six trees per phytoplasma isolates) in insect-proof greenhouse. The whip and bark grafting were not feasible for periwinkle plants, because of fineness and fragility of their tissues: only the chip-budding was performed (four plants per isolate). In apple trees, the best and soonest positive results were obtained by chip and bark grafting. Except for seven transplants not-grown after grafting, 100% efficiency of inoculation was obtained by both methods. Nevertheless, the transmission of phytoplasma from transplant not-grown to rootstock was sometimes recorded (28.6%). The earliest phytoplasma symptoms after whip or bark grafting appeared after 3 months. Symptoms were obtained much later with budding and chip-budding. In case of periwinkles, infected apple and periwinkle materials were used as inoculum sources. Transmission of phytoplasma from periwinkle to periwinkle was successfully carried out by chip-budding grafting. The symptoms were observed during the second month after inoculation. The transmission of phytoplasma from infected apple material to periwinkle (by chip-budding) was achieved for 60 % of the tested samples. Moreover, the latency period before symptom observation was longer. Finally, we perceived the apple trees are more convenient and rapid than periwinkle plants for biological indexing of apple materials.  相似文献   

7.
Auxin imbalance was suggested as a key factor in phytoplasma symptom development. Furthermore, remission of the symptoms of phytoplasma‐infected shoots can be promoted by culturing them in vitro in high‐auxin‐containing media. Therefore, effect of spraying 1‐naphthaleneacetic acid (NAA) on infected periwinkle (Catharanthus roseus) with periwinkle leaf yellowing (PLY) phytoplasma was examined. 1‐Naphthaleneacetic acid stimulated symptom development in phytoplasma‐inoculated shoots. Accelerated symptom development was associated with early accumulation of phytoplasmas. Two PATHOGENESIS‐RELATED (PR) genes, CrPR1a and CrPR1b, were induced by PLY phytoplasma infection, and the induction was suppressed by NAA. Therefore, the accelerated symptom development may be due to the suppression effect of NAA on PR‐related defence. However, while NAA promoted symptom development on shoots inoculated with phytoplasma, more non‐symptomatic shoots containing no phytoplasma were observed, suggesting that NAA prevents phytoplasma colonisation in non‐symptomatic shoots. The expression of two genes encoding jasmonic acid (JA) biosynthesis key enzymes, lipoxygenase and allene oxide cyclase, was downregulated in non‐symptomatic shoots of infected plants, and remained downregulated after auxin treatment. Therefore, the auxin‐promoted resistance should be JA independent. Because auxin may promote symptom development of PLY phytoplasma‐infected periwinkles, it may not link to plant resistance to phytoplasma infection.  相似文献   

8.
Abstract

Tomato (Solanum lycopersicum L.) plants showing stunting, big bud, leaves yellowing or reddening and witches’-broom symptoms were observed since 2009 in Pakistan. A weed Parthenium hysterophorus grown in and around tomato fields also exhibited witches’-broom like symptoms. Fluorescence light microscopy of hand-cut stem stalk sections treated with Dienes’ stain showed blue areas in the phloem region of both tomato and P. hysterophorus symptomatic plants that indicated the association of phytoplasma with the complex. Amplification of 1.2?kb 16S rDNA fragment in nested PCR confirmed that the symptomatic tomato and P. hysterophorus plants are infected by a phytoplasma. Partial sequencing of 16S rRNA (GenBank accession: LT671581 and LT671583) and virtual restriction fragment length polymorphism confirmed that the phytoplasma associated with both plant species had the greatest homology to 16SrII-D subgroup. Disease was successfully transmitted by grafting and leafhopper Orosius albicinctus in tomato plants. This is the first report of natural occurrence of 16SrII-D phytoplasma in tomatoes and a weed P. hysterophorus in Pakistan.  相似文献   

9.
We investigated multiple inflorescence disease of Cirsium arvense (CMI) and its association with phytoplasmas of the 16SrIII‐B subgroup, potential natural vector(s) and reservoir plant(s). From five locations in northern Serbia, 27 plants of C. arvense, 1 C. vulgare and 3 Carduus acanthoides with symptoms of multiple inflorescences (MIs) were collected and tested for 16SrIII group phytoplasmas. All symptomatic plants were found to be infected. Tentative reservoir plants and insect vectors were collected at a Dobanovci site where the continuous presence of CMI disease was recorded. Among the 19 most abundant plant species submitted to phytoplasma testing, all symptomless, the presence of the 16SrIII group was detected only in two legumes: Lathyrus tuberosus (2/5) and L. aphaca (1/5). Among 19 insect species from six families of Auchenorrhyncha, the deltocephalid leafhopper Euscelis incisus was the only insect carrying a 16SrIII phytoplasma (10% of analysed individuals). Transmission trials were performed with naturally infected E. incisus adults of the summer generation and with a laboratory population reared on red clover. After an acquisition period of 48 h on C. arvense symptomatic for MIs and a latent period of 28 days, 83% of the E. incisus adults (300/360) were infected with CMI phytoplasma. In two transmission tests, the leafhoppers successfully transmitted the phytoplasma to exposed plants (C. arvense and periwinkle), proving its role as a natural vector. Test plants of C. arvense infected with the 16SrIII‐B phytoplasma expressed typical symptoms similar to those observed in the field, such as MIs or the absence of flowering, shortened internodes and plant desiccation. Typical symptoms in infected periwinkles were virescence and phyllody. The molecular characterisation of the CMI phytoplasma isolates from diseased and asymptomatic field‐collected plants, vectors, and test plants was performed by sequence analyses of the 16S rRNA, rpl22rps3 and rpl15‐secY genes. Phylogenetic analyses of other members of the 16SrIII group of phytoplasmas indicated closest relatedness with clover yellow edge phytoplasma (CYE) of the 16SrIII‐B subgroup.  相似文献   

10.
The titer of chrysanthemum yellows phytoplasma (CYP, "Candidatus Phytoplasma asteris") in the three vector species Euscelis incisus Kirschbaum, Euscelidius variegatus Kirschbaum, and Macrosteles quadripunctulatus Kirschbaum (Homoptera: Cicadellidae) was measured after controlled acquisition from infected Chrysanthemum carinatum (Schousboe) (daisy) plants. Phytoplasma DNA was quantified in relation to insect DNA (genome units [GU] of phytoplasma DNA per ng of insect DNA) by using a quantitative real-time polymerase chain reaction (PCR) procedure. The increase in phytoplasma titer recorded in hoppers after they were transferred to plants that were nonhosts for CYP provides definitive evidence for phytoplasma multiplication in leafhoppers. CYP multiplication over time in M. quadripunctulatus was much faster than in E. incisus and E. variegatus. CYP titer was also highest in M. quadripunctulatus, and this was reflected in the latent period in the insect. The mean latent period of CYP in M. quadripunctulatus was 18 d versus 30 d in E. variegatus. M. quadripunctulatus was the most efficient vector, giving 100% transmission for single insects compared with 75-82% for E. incisus or E. variegatus, respectively. By sequential transmission, we analyzed the time course of transmission: E. variegatus were persistently infective for life or until shortly before death. Occasionally, leafhoppers failed to maintain continuity of infectivity even after completion of the latent period. PCR analysis of transmitter and nontransmitter E. variegatus adults showed that some nontransmitters were CYP positive, whereas others were CYP negative. These findings suggest that both midgut and salivary gland barriers play a role in transmission efficiency.  相似文献   

11.
During a survey in a limited area of the Shanxi province in China, phytoplasma symptoms were observed on woody plants such as Chinese scholar tree, apple, grapevine and apricot. The polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses on the phytoplasma 16S ribosomal gene confirmed that symptomatic samples from all these species were infected by phytoplasmas. The molecular characterization of the pathogen, performed also with sequencing of polymerase chain reaction amplified 16S rDNA, showed that the phytoplasmas detected in all plant species tested are closely related with stolbur, but two samples from a Chinese scholar tree were infected with phytoplasmas related to ‘Candidatus Phytoplasma japonicum’. The presence of RFLP polymorphism was found in the 16S rDNA amplicons with three of the six enzymes employed in the majority of phytoplasma strains studied.  相似文献   

12.
Laboratory trials were carried out on wild individuals of Reptalus quinquecostatus (Cixiidae), a potential vector of stolbur phytoplasma to grapevine, to assess its ability to inoculate the phytoplasma in artificial feeding medium. Seventy‐seven specimens of the cixiid were tested on a sucrose–TE (Tris–ethylenediaminetetraacetic acid) diet and 62 of them survived less than 24 h. Polymerase chain reaction (PCR) assays performed on the insect bodies detected the presence of stolbur phytoplasma, with an infection rate of 32.5%. Restriction fragment length polymorphism analysis of the tuf gene, amplified by PCR, revealed Vergilbungskrankheit type I (VK‐I) in 20 specimens, VK‐II in 4 specimens and both types in 1 specimen. Ten of the 25 infected R. quinquecostatus specimens successfully inoculated VK‐I in the sucrose solution, that is, a 40% inoculation efficiency despite the brief survival. The results indicate that R. quinquecostatus is a competent species to transmit the stolbur phytoplasma in artificial conditions. The repeated observation of adults feeding on grapevine strengthens the hypothesis that the species is a vector of stolbur phytoplasma to this plant.  相似文献   

13.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

14.
The objective of our research was to assess if arbuscular mycorrhizal (AM) fungal colonization can modify the effect of infection by two aster yellows phytoplasma strains (AY1, AYSim) in Catharanthus roseus plants. Both phytoplasma strains had a negative effect on the root fresh weight, but they differed in symptoms appearance and in their influence on photosynthetic and transpiration rates of the periwinkle plants. AM plants showed significantly reduced shoot fresh weight, while the transpiration rate was significantly increased. AM fungal colonization significantly affected shoot height and fresh weight of the plants infected by each phytoplasma strains as well as the root system of plants infected with the more aggressive AYSim phytoplasma strain. Double inoculation did not reduce the negative effects induced with phytoplasma alone on the photosynthetic activity of phytoplasma-infected plants.  相似文献   

15.
Experimental infection of Alstroemeria seedlings with naturally infected lily ‘Casablanca’ with stunting and flower bud deficiency phytoplasma resulted 3–4 weeks after top grafting in chlorotic and/or necrotic stripes, whitening of the leaves, shoot necrosis and die back. Flower discoloration or malformation were not observed. Attempts to transmit phytoplasma from naturally infected lily and experimentally infected Alstroemeria to Catharanthus roseus by top grafting resulted in stunted growth, dull yellowing and malformation of the leaves in 4–6 weeks. Some plants were temporary entirely vegetative and did not produce flowers. The periwinkle plants that were bridged by Cuscuta odorata from the diseased lilies and Alstroemerias showed similar symptoms as top-grafted ones. With the universal primer pairs rU3/fU5 specific PCR product with expected length ∼900 was amplified from samples collected from lilies with severe symptoms and top grafted test plants. All PCR products used for RFLP analysis after digestion with Alu I showed the same restriction profiles. Position of three obtained bands corresponded to the lengths of the DNA fragments of American aster yellows (AAY) phytoplasma group.  相似文献   

16.
17.
Tree peony (Paeonia suffruticosais) plants with yellowing symptoms suggestive of a phytoplasma disease were observed in Shandong Peninsula, China. Typical phytoplasma bodies were detected in the phloem tissue using transmission electron microscopy. The association of a phytoplasma with the disease was confirmed by polymerase chain reaction (PCR) using phytoplasma universal primer pair R16mF2/R16mR1 followed by R16F2n/R16R2 as nested PCR primer pair. The sequence analysis indicated that the phytoplasma associated with tree peony yellows (TPY) was an isolate of ‘Ca. Phytoplasma solani’ belonging to the stolbur (16SrXII) group. This is the first report of a phytoplasma associated with tree peony.  相似文献   

18.
In 2010, tomato plants with big bud symptoms were observed in Xinjiang, China. PCR products of approximately 1.2 and 2.8 kb were amplified from infected tomato tissues but not from asymptomatic plants. A comparison of 16S rDNA sequences showed that the casual tomato big bud (TBB) phytoplasma was closely (99%) related to the ‘Candidatus Phytoplasma trifolii’ (16SrVI group). The TBB phytoplasma clustered into one branch with the Loofah witches'‐broom phytoplasma according to the 23S rDNA analysis but with no other member of the 16SrVI group. The cause of TBB symptoms was identified as ‘Ca. Phytoplasma trifolii' (16SrVI group) by PCR, virtual RFLP and sequencing analyses. This is the first report of a phytoplasma related to ‘Ca. Phytoplasma trifolii' causing TBB disease in China.  相似文献   

19.
Samples of three plant species displaying phytoplasma symptoms were collected from Kafrelsheikh and Al-Gharbia governorates during 2014. Witches’ broom and virescence symptoms were observed in periwinkle (Catharanthus roseus). Onion (Allium cepa) plants showed yellowing, streaks and twisting and Opuntia abjecta with proliferation and cylindrical of cladodes. Total DNA was extracted from symptomatic and asymptomatic plants, and phytoplasma were detected in all 12 symptomatic plants collected through direct and nested PCR assays with primers P1/P7 and R16F2n/R16R2. The results of phylogenetic analysis revealed that the phytoplasma isolates belong to 16SrII group. With a nucleotide identity greater than 98.7% with three members of 16SrII group, Papaya yellow crinkle, Y10097; “Ca. P. aurantifolia”, U15442; and peanut witches’ broom, Al33765, the strains identified in this study are “Ca. P. aurantifolia”-related strains. Virtual RFLP analysis of the 16S rRNA gene sequences with 17 restriction enzymes confirmed that the phytoplasma isolates belong to the “Candidatus Phytoplasma australasia” 16SrII-D subgroup. To the best of our knowledge, periwinkle, onion and Opuntia abjecta are considered new hosts for 16SrII group in Egypt.  相似文献   

20.
Phytoplasmas are phloem‐inhabiting, cell wall‐less bacteria that cause numerous plant diseases worldwide. Plants infected by phytoplasmas often exhibit various symptoms indicative of hormonal imbalance. In this study, we investigated the effects of potato purple top (PPT) phytoplasma infection on gibberellin homeostasis in tomato plants. We found that PPT phytoplasma infection caused a significant reduction in endogenous levels of gibberellic acid (GA3). The decrease in GA3 content in diseased plants was correlated with down regulation of genes responsible for biosynthesis of bioactive GAs ( GA20ox1 and GA3ox1) and genes involved in formation of GA precursors [geranyl diphosphate synthase (GPS) and copalyldiphosphate synthase (CPS)]. Exogenous application of GA3 at 200 µmol L?1 was able to restore the GA content in infected plants to levels comparable to those in healthy controls, and to attenuate the characteristic ‘big bud’ symptoms induced by the phytoplasma. The interesting observation that PPT phytoplasma‐infected plants had prolonged low expression of key GA biosynthesis genes GA20ox1 and GA3ox1 under GA deficiency conditions led us to hypothesise that there was a diminished sensitivity of the GA metabolism feedback regulation, especially GA biosynthesis negative feedback regulation, in those affected plants, and such diminished sensitization in early stages of infection may represent a central element of the phytoplasma‐induced disruption of GA homeostasis and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号