共查询到20条相似文献,搜索用时 0 毫秒
1.
Phytoplasmas in leafhoppers have been detected by PCR using chrysanthemum yellows (CY)-infected chrysanthemum as source plants, and two cicadellid Deltocephalinae species, Macrosteles quadripunctulatus and Euscelis incisus, as vectors. Three different primer pairs were used; two of these are universal and have been designed on conserved sequences of the 16S rRNA gene of phytoplasmas, and one was designed on extrachromosomal DNA of a severe strain of western aster yellows phytoplasma. They were used to amplify CY DNA obtained by two different extraction procedures; one was extraction with cetyl-trimethyl-ammonium-bromide (CTAB), and the other was boiling in Tris-EDTA buffer. The chromosomal primers amplified phytoplasma-specific bands only from “CTAB” samples, while the plasmid primers were successful with both procedures. Amplification of phytoplasma DNA was possible from as little as 1/10000 of total DNA extracted from a single hopper. Failure to amplify phytoplasma DNA from insects stored at –20oC for 2 yr suggested that some kind of inhibition develops during long term tissue storage. Direct PCR appeared a very specific, sensitive and rapid method to detect phytoplasmas in fresh leafhoppers, provided that a proper combination of extraction and amplification procedures was used. 相似文献
2.
Chinmay Biswas Piyali Dey Subrata Satpathy 《Archives Of Phytopathology And Plant Protection》2013,46(14):1746-1751
Infection of stolbur phytoplasma was detected in kenaf (Hibiscus cannabinus) plants at CRIJAF research farm, Barrackpore, India. The infected plants formed profuse short branches at the top with bushy and bunchy top appearance. PCR with universal 16S rDNA phytoplasma primers P1/P7 yielded amplicons of 1.5 kb from all symptomatic leaf samples. Nested PCR with 16S-rDNA-specific nested primer pair R16F2n/R2 generated an amplicon of 1241 bp confirming the presence of a phytoplasma. The nested PCR products were sequenced and BALSTn analysis revealed 100% identity with 16S rRNA gene of phytoplasma. Phylogenetic analysis showed kenaf phytoplasma having 99% identity with both “Bois noir” stolbur phytoplasma 16SrXII group (Accession no: JQ181540). The RFLP data also supported the phylogenetic analysis. Multi-locus sequence characterisation assay was conducted by using different locus-specific primers viz. tuf, rpsC-rplV, rplF-rplR, map-SecY and uvrB-degV. The infected phytoplasma samples amplified only SecY gene and generated 1224 bp product which was deposited at NCBI (accession no: KC508636). 相似文献
3.
Between 2003 and 2005, a survey was conducted throughout the grape‐growing regions of Bulgaria to identify possible infection with grapevine yellows diseases, especially Flavescence dorée (FD). The samples were checked for phytoplasmas and viruses inducing similar symptoms in the Central Laboratory for Plant Quarantine. To confirm stolbur phytoplasma infection of grapevine, a multiplex nested‐PCR assay for direct detection of FD and stolbur phytoplasmas was used. Infection of grapevine with phytoplasma was detected. The disease is very common disease in Bulgaria on tomatoes, potatoes and other crops. Monitoring is being continued. This is the first report of phytoplasma‐infected grapevine in Bulgaria. 相似文献
4.
Phytoplasmas belonging to the 16S rDNA subgroups IB and IC were found in five cyclamen (Cyclamen persicum L.) plants showing virescence and yellow stunted leaves and one plant showing phyllody, rolled and thickened leaves, respectively. Two cyclamens, representing the two syndromes, were chosen as source plants for transmission trials in which three leafhopper species, known as vectors of IB and IC subgroup phytoplasmas, were used to inoculate cyclamen and periwinkle [Catharanthus roseus (L.) G. Don] test plants. Out of 366 tested plants only one periwinkle exposed to Euscelis incisus was found harbouring a 16Sr‐IB phytoplasma. Out of 60 tested vector insects, only one adult of Macrosteles quadripunctulatus and two of E. incisus fed on 16Sr‐IB source cyclamen gave a positive amplification signal in nested PCR. This extremely low level of transmission to both cyclamen and the very susceptible periwinkle strongly suggests that cyclamen, commonly found infected in crops, is an unsuitable species for phytoplasma acquisition and can be regarded as a dead‐end host plant for phytoplasmas belonging to both IB and IC subgroups. Indications for glasshouse management are drawn from these findings. Among the leafhoppers investigated E. incisus falls most under suspicion since it feeds better than the others on cyclamen, was able to transmit the disease to one periwinkle plant, and IB phytoplasmas were detected in two individuals. 相似文献
5.
Mira Starović Slobodan Kuzmanović Veljko Gavrilović Goran Aleksić Tatjana Popović Saša Stojanović Dragana Jošić 《Journal of Phytopathology》2012,160(11-12):758-760
Plants of alfalfa (Medicago sativa) exhibiting general stunting, proliferation and phyllody associated with leaf yellowing and reddening were observed in three localities of Central Serbia. Phytoplasma strains belonging to 16SrIII‐B and 16SrXII‐A groups were detected and identified by RFLP and sequence analysis of 16S rDNA. Stolbur phytoplasma tuf gene RFLP analysis showed the presence of the TufAY‐b‐type phytoplasma subgroup in 80% of symptomatic samples. This is the first report of 16SrIII‐B and 16SrXII‐A phytoplasma groups affecting alfalfa in Serbia. 相似文献
6.
The Association of Clover Proliferation Phytoplasma with Stolbur Disease of Pepper in Spain 总被引:1,自引:0,他引:1
A phytoplasma disease, `stolbur', affects pepper ( Capsicum annuum ) in Spain. Affected plants have short internodes, green flowers buds and other symptoms that are characteristic of phytoplasma-induced diseases. Herein the detection and classification of the phytoplasma that may cause the disease is reported. DNA amplification by polymerase chain reaction, sequencing and phylogenetic analysis indicate that this phytoplasma should be classified in the clover proliferation group 16SrVI, a group that is clearly distinct from the stolbur group 16SrXII. 相似文献
7.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran. 相似文献
8.
9.
A real-time polymerase chain reaction (PCR) method for the quantification of chrysanthemum yellows (CY) phytoplasma DNA in
its plant (Chrysanthemum carinatum) and insect (Macrosteles quadripunctulatus) host is described. The quantity of CY DNA was measured in each run relative to the amount of host DNA in the sample. Primers
and a TaqMan probe for the specific PCR amplification of phytoplasma DNA were designed on a cloned CY-specific ribosomal fragment.
Primers and TaqMan probes were also designed on sequences of the internal transcribed spacer region of the insect’s ITS1 rDNA
and of the plant’s 18S rDNA for amplification from C. carinatum and M. quadripunculatus, respectively.
Absolute quantification of CY DNA was achieved by comparison with a dilution series of the plasmid containing a CY 16S rDNA
target sequence. Absolute quantification of plant and insect DNAs was achieved by comparison with a dilution series of the
corresponding DNAs. Quantification of CY DNA in relation to host DNA was finally expressed as genome units (GU) of phytoplasma
DNA per nanogram of host (plant or insect) DNA. Relative quantification avoided influences due to different yields during
the DNA extraction procedure. The quantity of CY DNA was about 10,000–20,000 GU/ng of plant DNA and about 30,000–50,000 GU/ng
of insect DNA. The method described could be used to phytoplasma multiplication and movement in different plant and insect
hosts. 相似文献
10.
W.B. Borth S.K. Fukuda R.T. Hamasaki J.S. Hu & R.P.P. Almeida 《The Annals of applied biology》2006,149(3):357-363
A new yellows disease of watercress (Nasturtium officinale) in Hawaii has symptoms of reduced leaf size, leaf yellowing and crinkling, and occasionally witches’ brooms. This disease is found on all watercress farms on Oahu but has not yet been found on other Hawaiian islands. Watercress plants were tested for phytoplasma infection by polymerase chain reaction assays using phytoplasma‐specific primers. Amplicons of the expected sizes were produced from all symptomatic plants but not from healthy plants raised from seed. Phylogenetic analysis of the 16S rRNA gene indicated that watercress yellows was caused by a phytoplasma in the aster yellows group, with sequence similarity to onion yellows from Japan. Six weed species collected from the vicinity of affected watercress farms, Amaranth sp., Eclipta prostrata, Emilia sonchifolia, Plantago major, Myriophyllum aquaticum and Sonchus oleraceus, were also determined to be hosts of this phytoplasma. Leafhoppers, identified as Macrosteles sp. (Hemiptera, Cicadellidae), collected from symptomatic watercress transmitted this phytoplasma to watercress, plantain and lettuce (Lactuca sativa) in greenhouse experiments. 相似文献
11.
Sugarcane white leaf phytoplasma in tissue culture: long-term maintenance,transmission, and oxytetracycline remission 总被引:4,自引:0,他引:4
Sugarcane white leaf (SCWL)-diseased sugarcane plants collected from Udornthani Province, in north-eastern Thailand, were the source for tissue culture experiments. Explants from axillary buds, meristem tips, and leaves grew optimally in Murashige-Skoog medium containing 0.5 mg/l -naphthaleneacetic acid, 0.5 mg/l 6-benzylaminopurine, and 15% coconut water. Callus development and shoot/root proliferation were more rapid in cultures from diseased than from healthy plants. Disease symptoms continued for 6 years after culture initiation, and SCWL phytoplasma persisted, as confirmed by polymerase chain reaction using both 16S rDNA and 16S-23S rDNA primers. Phytoplasmas in the cultured plantlets were transmissible by grafting to sugarcane and periwinkle, and by feeding of the leafhopper vector Matsumuratettix hiroglyphicus to sugarcane. Although 50% of the plantlets were killed by oxytetracycline at 500 mg/ml, 70–100% of plantlets grown with 200–500 mg/ml oxytetracycline showed symptom remission through 5–8 subcultures. Typical phytoplasma-like bodies, visible by electron microscopy in sieve tubes of untreated diseased plantlets, were absent in antibiotic-treated plantlets. Thus, tissue culture provides a convenient and reliable in vivo system for investigation of SCWL phytoplasma. A preliminary report of this study was presented at the Eighth International Congress of Plant Pathology, Christchurch, New Zealand, 2–7 February 2003 相似文献
12.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A). 相似文献
13.
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host‐race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant‐specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant‐transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains. 相似文献
14.
Behet Kemal alar Serdar Satar Assunta Bertaccini Toufic Elbeaino 《Journal of Phytopathology》2019,167(4):248-255
During 2017, maize cultivation areas in the provinces of Adana and Kahramanmara? (Turkey) were surveyed to inspect maize plants with symptoms similar to those associated with of phytoplasma disease, that is, yellowing, short internodes and small corncobs. Thirty fields were inspected and two hundred samples from symptomatic and asymptomatic plants were collected, together with insects considered as potential vectors of phytoplasmas. All samples were assayed by polymerase chain reaction (PCR) and subsequently analysed by restriction fragment length polymorphism and sequencing to identify the phytoplasmas detected in the plant material and insects. Results of laboratory assays and phylogenetic analyses showed that the Bermudagrass white leaf phytoplasma ('Candidatus Phytoplasma cynodontis') was present in both maize plants and seeds, showing 99% sequence identity with other reported phytoplasma strains from GenBank, whereas no PCR amplifications were obtained from tested insects. The seeds of infected plants, sown in an insect‐proof screenhouse, produced plantlets that were found PCR‐positive for the Bermudagrass white leaf phytoplasma, indicating its seed transmission. 相似文献
15.
Jes Johannesen Benjamin Lux Kristina Michel Alfred Seitz & Michael Maixner 《Entomologia Experimentalis et Applicata》2008,126(3):217-227
Within the past 10 years, the yellows disease ‘bois noir’ (BN) has become one of the commercially most important diseases of grapevine [Vitis vinifera L. (Vitaceae)] in Europe. Infection pressure is caused by phytoplasmas of the stolbur 16SrXII‐A group that are transmitted by a planthopper vector, Hyalesthes obsoletus Signoret (Homoptera: Auchenorrhyncha). Infestation happens as an accidental side‐effect of the feeding behaviour of the vector, as vector and pathogen proliferation is dependent on other plants. In Germany, the increase of BN is correlated with the use of a new host plant by the vector, increase in abundance of the vector on the new host plant, and dissemination of host plant‐specific pathogen strains. In this article, we investigate geographic and host‐associated range expansion of the vector. We test whether host‐plant utilization in Germany, hence the increase in BN, is related to genetic host races of the vector and, if so, whether these have evolved locally or have immigrated from southern populations that traditionally use the new host plant. The genetic population analysis demonstrates a recent expansion and circum‐alpine invasion of H. obsoletus into German and northern French wine‐growing regions, which coincides with the emergence of BN. No H. obsoletus mitochondrial DNA haplotype host‐plant affiliation was found, implying that the ability to use alternative host plants is genetically intrinsic to H. obsoletus. However, subtle yet significant random amplified polymorphic DNA (RAPD) genetic differentiation was found among host plant populations. When combined, these results suggest that a geographic range expansion of H. obsoletus only partly explains the increase of BN, and that interactions with host plants also occur. Further possible beneficial factors to H. obsoletus, such as temperature increase and phytoplasma interactions, are discussed. 相似文献
16.
17.
M. Jakovljević J. Jović M. Mitrović O. Krstić A. Kosovac I. Toševski T. Cvrković 《The Annals of applied biology》2015,167(3):406-419
We investigated multiple inflorescence disease of Cirsium arvense (CMI) and its association with phytoplasmas of the 16SrIII‐B subgroup, potential natural vector(s) and reservoir plant(s). From five locations in northern Serbia, 27 plants of C. arvense, 1 C. vulgare and 3 Carduus acanthoides with symptoms of multiple inflorescences (MIs) were collected and tested for 16SrIII group phytoplasmas. All symptomatic plants were found to be infected. Tentative reservoir plants and insect vectors were collected at a Dobanovci site where the continuous presence of CMI disease was recorded. Among the 19 most abundant plant species submitted to phytoplasma testing, all symptomless, the presence of the 16SrIII group was detected only in two legumes: Lathyrus tuberosus (2/5) and L. aphaca (1/5). Among 19 insect species from six families of Auchenorrhyncha, the deltocephalid leafhopper Euscelis incisus was the only insect carrying a 16SrIII phytoplasma (10% of analysed individuals). Transmission trials were performed with naturally infected E. incisus adults of the summer generation and with a laboratory population reared on red clover. After an acquisition period of 48 h on C. arvense symptomatic for MIs and a latent period of 28 days, 83% of the E. incisus adults (300/360) were infected with CMI phytoplasma. In two transmission tests, the leafhoppers successfully transmitted the phytoplasma to exposed plants (C. arvense and periwinkle), proving its role as a natural vector. Test plants of C. arvense infected with the 16SrIII‐B phytoplasma expressed typical symptoms similar to those observed in the field, such as MIs or the absence of flowering, shortened internodes and plant desiccation. Typical symptoms in infected periwinkles were virescence and phyllody. The molecular characterisation of the CMI phytoplasma isolates from diseased and asymptomatic field‐collected plants, vectors, and test plants was performed by sequence analyses of the 16S rRNA, rpl22‐rps3 and rpl15‐secY genes. Phylogenetic analyses of other members of the 16SrIII group of phytoplasmas indicated closest relatedness with clover yellow edge phytoplasma (CYE) of the 16SrIII‐B subgroup. 相似文献
18.
Mona Gazel Kadriye Çağlayan Hüseyin Başpınar Juan F. Mejia Samanta Paltrinieri Assunta Bertaccini Nicoletta Contaldo 《Journal of Phytopathology》2016,164(2):136-140
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees. 相似文献
19.
Khalid Pervaiz Akhtar Muhammad Yussouf Saleem Sumaira Yousaf Najeeb Ullah Ghulam Rasool Nighat Sarwar 《Archives Of Phytopathology And Plant Protection》2013,46(7-8):387-398
AbstractTomato (Solanum lycopersicum L.) plants showing stunting, big bud, leaves yellowing or reddening and witches’-broom symptoms were observed since 2009 in Pakistan. A weed Parthenium hysterophorus grown in and around tomato fields also exhibited witches’-broom like symptoms. Fluorescence light microscopy of hand-cut stem stalk sections treated with Dienes’ stain showed blue areas in the phloem region of both tomato and P. hysterophorus symptomatic plants that indicated the association of phytoplasma with the complex. Amplification of 1.2?kb 16S rDNA fragment in nested PCR confirmed that the symptomatic tomato and P. hysterophorus plants are infected by a phytoplasma. Partial sequencing of 16S rRNA (GenBank accession: LT671581 and LT671583) and virtual restriction fragment length polymorphism confirmed that the phytoplasma associated with both plant species had the greatest homology to 16SrII-D subgroup. Disease was successfully transmitted by grafting and leafhopper Orosius albicinctus in tomato plants. This is the first report of natural occurrence of 16SrII-D phytoplasma in tomatoes and a weed P. hysterophorus in Pakistan. 相似文献
20.
Novel insertion sequence (IS)-like elements were isolated and characterized from phytoplasma strains in the aster yellows (AY) group (16SrI). The IS-like elements were cloned from phytoplasma strains AY1 and NJAY or PCR-amplified from 15 additional strains representing nine subgroups in the AY group using primers based on sequences of the putative transposases (Tpases). All IS-like elements contained sequences encoding similar Tpases of 321 amino acids (320 for strain CPh). Substantial amino acid sequence variability suggested multiple species of Tpases or IS-like elements exist in the AY phytoplasma group. These Tpases have an identical DDE motif that is most similar to the DDE consensus of Tpases in the IS3 family. 相似文献