首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inosine is a purine nucleoside and is considered protective to neural cells including neurons and astrocytes against hypoxic injury. However, whether oligodendrocytes (OLs) could also be protected from hypoxia by inosine is not known. Here we investigated the effects of inosine on primarily cultured rat OLs injured by rotenone-mediated chemical hypoxia, and the mechanisms of the effects using ATP assay, MTT assay, PI-Hoechst staining, TUNEL, and immunocytochemistry. Results showed that rotenone exposure for 24 h caused cell death and impaired viability in both immature and mature OLs, while pretreatment of 10 mM inosine 30 min before rotenone administration significantly reduced cell death and improved the viability of OLs. The same concentration of inosine given 120 min after rotenone exposure also improved viability of injured mature OLs. Immunocytochemistry for nitrotyrosine and cellular ATP content examination indicated that inosine may protect OLs by providing ATP and scavenging peroxynitrite for cells. In addition, immature OLs were more susceptible to hypoxia than mature OLs; and at the similar degree of injury, inosine protected immature and mature OLs differently. Quantitative real-time PCR revealed that expression of adenosine receptors was different between these two stages of OLs. These data suggest that inosine protect OLs from hypoxic injury as an antioxidant and ATP provider, and the protective effects of inosine on OLs vary with cell differentiation, possibly due to the adenosine receptors expression profile. As OLs form myelin in the central nervous system, inosine could be used as a promising drug to treat demyelination-involved disorders.  相似文献   

2.
Dendritic cells (DC) are essential to the initiation of an immune response due to their unique ability to take-up and process Ag, translocate to lymph nodes, and present processed Ag to naive T cells. Many chemokines, chemokine receptors and other G protein-coupled receptors (GPCRs) are implicated in these various aspects of DC biology. Through microarray analysis, we compared expression levels of chemokines, their cognate receptors, and selected GPCRs in human monocytes and in vitro monocyte-derived immature and mature DC. Hierarchical clustering of gene expression clearly distinguishes the three cell types, most notably highlighting exceptional levels of expression of the GPCR GPR105 within the immature monocyte-derived DC (MDDC) gene cluster. Little or no expression was observed within the monocyte and mature MDDC cluster. Putative functionality of the GPR105 receptor was demonstrated by an observed calcium flux in immature MDDC treated with the potent GPR105 agonist, uridine 5'-diphosphoglucose (UDP-glucose), while no response to the nucleotide sugar was seen in monocytes and mature MDDC. This UDP-glucose-induced calcium response was, at least in part, pertussis toxin-sensitive. Moreover, immature MDDC from some donors treated with UDP-glucose exhibit an increase in expression of the costimulatory molecule CD86, which correlates with the intensity of the UDP-glucose-induced calcium flux. Together, these data demonstrate differential expression of GPR105 on immature and mature MDDC and suggest a role for the receptor and its agonist ligand in DC activation.  相似文献   

3.
4.
We recently described a subset of peripheral CD14+CD34+ cells able to migrate across endothelial cell monolayers and differentiate into immunostimulatory dendritic cells (DC). In this paper we show that immature DC derived from CD14+CD34+ precursors are also capable of reverse transendothelial migration and extracellular matrix (ECM) invasion using the urokinase plasminogen activator receptor (uPAR). We found that these cells respond to macrophage-inflammatory protein (MIP)-1alpha, enhancing their ability to invade ECM and supporting the idea that immature DC are selectively recruited at the site of inflammation to expand the pool of APCs. Interestingly, MIP-1alpha was also capable of preventing the decreased matrix invasion observed by blocking uPAR, suggesting that the uPA/uPAR system and MIP-1alpha cooperate in driving immature DC migration through the subendothelial matrix. Upon exposure to maturating stimuli, such as TNF-alpha, CD14+CD34+-derived DC enhance their APC function and decrease the capacity of invading ECM; these changes are accompanied by altered expression and function of uPAR. Moreover, mature DC shift their sensitivity from MIP-1alpha to MIP-3beta, enhancing their transendothelial migration capability in response to the latter chemokine. Our data support the hypothesis that bloodborne DC can move through ECM toward the site of pathogen entry where they differentiate into fully mature APCs with their motility and function regulated by microenvironmental stimuli, including MIP-1alpha, MIP-3beta, and TNF-alpha.  相似文献   

5.
We previously reported the characterization of a MHC class II(low) CD4- CD103+ (CD4-) subset of dendritic cells (DC) in rat spleen that exhibit a Ca2+-, Fas ligand-, TRAIL- and TNF-alpha-independent cytotoxic activity against specific targets in vitro. In this study, we demonstrate that this DC subset was also found in lymph nodes. Freshly extracted and, therefore, immature CD4- DC exhibited a potent cytotoxic activity against a large panel of tumor cell lines as well as primary endothelial cells. The cytotoxic activity of immature CD4- DC required cell-to-cell contact and de novo protein expression. CD4- DC-mediated cell death resembled apoptosis, as evidenced by outer membrane phosphatidylserine exposure and nuclear fragmentation in target cells, but was caspase as well as Fas-associated death domain and receptor-interacting protein independent. Bcl-2 overexpression in target cells did not protect them against DC-mediated cell death. Immature CD4- DC phagocytosed efficiently apoptotic cells in vitro and, therefore, rapidly and specifically engulfed their victims following death induction. Maturation induced a dramatic down-regulation of the killing and phagocytic activities of CD4- DC. In contrast, CD4+ DC were both unable to kill target cells and to phagocytose apoptotic cells in vitro. Taken together, these data indicate that rat immature CD4- CD103+ DC mediate an unusual cytotoxic activity and can use this function to efficiently acquire Ag from live cells.  相似文献   

6.
Professional APC are characterized by their ability to present peptide via HLA class II in the presence of costimulatory molecules (CD40, CD80, and CD86). The efficiency of Ag presentation can be classed as follows: mature dendritic cells (DC) are most efficient, immature DC and macrophages are intermediate, and monocytes are considered poor APC. There is a large body of evidence demonstrating that HLA-DR transmits signals in the APC. In this study, we have addressed the question of the outcome of HLA-DR signals on APC of the monocyte/DC lineages throughout their differentiation from immature to mature APC. DC were generated from both monocytes and CD34+ cells of the same individual, macrophages were differentiated from monocytes. Immunophenotypical analysis clearly distinguished these populations. HLA-DR-mediated signals led to marked apoptosis in mature DC of either CD34 or monocytic origin. Significantly less apoptosis was observed in immature DC of either origin. Nonetheless, even immature DC were more susceptible to HLA-DR-mediated apoptosis than macrophages, whereas monocytes were resistant to HLA-DR-mediated apoptosis. The mechanism of HLA-DR-mediated apoptosis was independent of caspase activation. Taken together, these data lead to the notion that signals generated via HLA-DR lead to the demise of mature professional APC, thereby providing a means of limiting the immune response.  相似文献   

7.
8.
Human dendritic cells (DC) obtained in vitro from CD34(+) progenitors (CD34-DC) or blood monocytes (mo-DC) are different DC which may be used in a model of T. gondii infection. We compared the survival, infection rate and cell surface receptor expression of both DC types after living T. gondii tachyzoite infection. CD34-DC appeared less resistant to the parasite than mo-DC. At 48h post-infection, chemokine receptors responsible for DC homing and migration were absent in mo-DC, while down regulation of CCR6 and up regulation of CCR7 was observed in CD34-DC. This result, suggesting migration ability of CD34-DC, was confirmed by in vitro migration experiments against different chemokines. Tachyzoite supernatant, used as chemokine, attracted immature CD34-DC as observed by MIP3alpha, while MIP3beta, as expected, attracted mature CD34-DC. Under similar conditions, no significant difference was noticed between mature or immature mo-DC. These data indicated that CD34-DC represent an alternative model that allows migration assay of infected DC by T. gondii.  相似文献   

9.
The differentiation of monocytes into dendritic cells (DC) is a key mechanism by which the innate immune system instructs the adaptive T cell response. In this study, we investigated whether leukocyte Ig-like receptor A2 (LILRA2) regulates DC differentiation by using leprosy as a model. LILRA2 protein expression was increased in the lesions of the progressive, lepromatous form vs the self-limited, tuberculoid form of leprosy. Double immunolabeling revealed LILRA2 expression on CD14+, CD68+ monocytes/macrophages. Activation of LILRA2 on peripheral blood monocytes impaired GM-CSF induced differentiation into immature DC, as evidenced by reduced expression of DC markers (MHC class II, CD1b, CD40, and CD206), but not macrophage markers (CD209 and CD14). Furthermore, LILRA2 activation abrogated Ag presentation to both CD1b- and MHC class II-restricted, Mycobacterium leprae-reactive T cells derived from leprosy patients, while cytokine profiles of LILRA2-activated monocytes demonstrated an increase in TNF-alpha, IL-6, IL-8, IL-12, and IL-10, but little effect on TGF-beta. Therefore, LILRA2 activation, by altering GM-CSF-induced monocyte differentiation into immature DC, provides a mechanism for down-regulating the ability of the innate immune system to activate the adaptive T cell response while promoting an inflammatory response.  相似文献   

10.
Mast cells and immature dendritic cells (DC) are in close contact in peripheral tissues. Upon activation, mast cells release histamine, a mediator involved in the immediate hypersensitivity reaction. We therefore tested whether histamine could affect human DC activation and maturation. Histamine induces CD86 expression on immature DC in a dose-dependent (significant at 10(-7) M) and transient manner (maximal after 24-h stimulation). Histamine also transiently up-regulates the expression of the costimulatory and accessory molecules, CD40, CD49d, CD54, CD80, and MHC class II. As a consequence, immature DC exposed for 24 h to histamine stimulate memory T cells more efficiently than untreated DC. In addition, histamine induces a potent production of IL-6, IL-8, monocyte chemoattractant protein 1, and macrophage-inflammatory protein 1alpha by immature DC and also up-regulates IL-1beta, RANTES, and macrophage-inflammatory protein 1beta but not TNF-alpha and IL-12 mRNA expression. Histamine activates immature DC through both the H1 and H2 receptors. However, histamine-treated DC do not have a phenotype of fully mature cells, as they do neither show significant changes in the expression of the chemokine receptors, CCR5, CCR7 and CXC chemokine receptor 4, nor expression of CD83 de novo. These data demonstrate that histamine activates immature DC and induces chemokine production, thereby suggesting that histamine, via stimulation of resident DC, may participate locally in T cell stimulation and in the late inflammatory reaction associated with allergic disorders.  相似文献   

11.
The ability of human dendritic cells (DC) to uptake synthetic micro- and nanosized particles was assessed by flow cytometry and fluorescent microscopy. DCs were differentiated in vitro from blood monocytes in the presence of recombinant cytokines. Further maturation of DC in culture after the addition of maturation factors resulted in the increased expression of HLA-DR and co-stimulatory molecules CD80, CD83, CD86, in comparison with immature DC. Active internalization of Fluoresbrite-YG fluorescent microbeads (0.2 μm) was noted for immature but not mature DCs. The decrease of endocytic activity after DC maturation correlated with the reduced expression of CD209, the surface membrane receptor participating in phagocytosis. Unlike microparticles, the uptake of nanoscale Quantum dots-655 did not depend on the stage of DC maturation and probably was mediated by a different endocytosis mechanism.  相似文献   

12.
Immature dendritic cells (DC), in contrast to their mature counterparts, are incapable of mobilizing a CD8+ CTL response, and, instead, have been reported to induce CTL tolerance. We directly addressed the impact of immature vs mature DC on CTL responses by infusing adenovirus peptide-loaded DC (of the D1 cell line) into mice that had received adenovirus-specific naive TCR-transgenic CD8+ T cells. Whereas i.v. injection of mature DC triggered vigorous CTL expansion, immature DC elicited little proliferation involving only a minority of the TCR-transgenic CTL. Even though the latter CTL developed effector functions, including cytolytic activity and proinflammatory cytokine secretion, these cells differed significantly from CTL primed by mature DC in that they did not exhibit down-regulation of CD62L and CCR7, receptors involved in trapping of T cells in the lymphoid organs. Interestingly, adoptive transfer of CTL effector cells harvested after priming by either mature or immature DC into naive recipient mice, followed by exposure to adenovirus, yielded quantitatively and qualitatively indistinguishable CTL memory responses. Therefore, in vivo priming of naive CD8+ T cells by immature DC, although failing to induce a full-blown, systemic CTL response, resulted in the formation of central memory-like T cells that were able to expand and produce IFN-gamma upon secondary antigenic stimulation.  相似文献   

13.
Uridine nucleotides are endogenous nucleotides which are released into the extracellular space from mechanical stressed endothelial and epithelial cells as well as lipopolysaccharide (lps)-stimulated monocytes. Here, we studied the biological activity of the selective purinoreceptor P2Y6 (P2YR6) agonist Uridine 5'diphosphate (UDP) as well as the P2YR2- and P2YR4-activating uridine 5'triphosphate (UTP) on human dendritic cells (DC). These cells in their immature state have the ability to migrate from blood to peripheral target sites where they sense dangerous signals and capture potential antigens. Moreover, mature DC induce innate immune responses and migrate from peripheral tissues to secondary lymphoid organs in order to activate naive T cells and initiate adaptive immunity. Here, we were able to show that uridine nucleotides stimulated Ca(2+) transients, actin polymerization, and chemotaxis in immature DC. Experiments with pertussis toxin, the stable pyrimidine agonist uridine 5'-O-(2-thiodiphosphate) (UDPgammaS) and receptor antagonists, as well as desensitization studies suggested that these uridine nucleotides activities were mediated by different G(i) protein-coupled receptors. During lps-induced maturation, DC lost their ability to respond towards uridine nucleotides with these activities. Instead, UDP, but not UTP, stimulated the release of the CXC-chemokine 8 (CXCL8) from mature DC in a reactive blue sensitive manner. Moreover, our study indicates that UDP stimulates different signaling pathways in immature and mature DC in order to favor the accumulation of immature DC and to augment the capacity to secrete CXCL8 in mature DC.  相似文献   

14.
Dendritic cells (DC) bring Ags into lymphoid organs via lymphatic vessels. In this study, we investigated the possibility that the sympathetic neurotransmitter norepinephrine (NE) influences DC migration. Murine epidermal Langerhans cells mobilization is enhanced by systemic treatment with the alpha(2)-adrenergic antagonist yohimbine and inhibited by local treatment with the specific alpha(1)-adrenergic antagonist prazosin (PRA). Consistently, NE enhances spontaneous emigration of DC from ear skin explants, and PRA inhibits this effect. In addition, local treatment with PRA during sensitization with FITC inhibits the contact hypersensitivity response 6 days later. In vitro, bone marrow-derived immature, but not CD40-stimulated mature DC migrate in response to NE, and this effect is neutralized by PRA. NE seems to exert both a chemotactic and chemokinetic activity on immature DC. Coherently, immature, but not mature DC, express mRNA coding for the alpha(1b)-adrenergic receptor subtype. Inactivation of this adrenergic receptor by the specific and irreversible antagonist chloroethylclonidine hinders the migration of injected DC from the footpad to regional lymph nodes. Thus, besides regulating lymph flow, the sympathetic innervation of lymphatic vessels may participate in directing DC migration from the site of inflammation to regional lymph nodes. Alternatively, the chemokinetic activity of NE may enhance the ability of DC to sample local Ags, and hence increase the number of DC migrating to the draining lymph nodes. This finding might improve our understanding of the biological basis of skin diseases and allergic reactions, and opens new pharmacological possibilities to modulate the immune response.  相似文献   

15.
Immature dendritic cells (DC) reside in peripheral tissues, where they pick up and process incoming pathogens via scavenger receptors or FcR such as FcgammaR and FcepsilonR. At mucosal surfaces, IgA is the main Ig to protect the body from incoming pathogens. In addition, DC are present in high numbers at these sites. We detected expression of FcalphaR (CD89) on the CD14+ population of CD34+ progenitor-derived DC and on monocyte-derived DC (MoDC). However, CD89 expression was strongly decreased upon differentiation from monocyte to DC. We found only minimal binding of serum IgA to MoDC but strong binding of secretory IgA (SIgA). The SIgA binding to MoDC could not be blocked by anti-CD89 blocking Abs. DC efficiently internalized SIgA, but not serum IgA, and uptake of SIgA could be blocked by specific sugars or partially by Ab reactive with mannose receptor. Importantly, binding and uptake of SIgA was not accompanied by signs of DC maturation, such as increased expression of CD86 and CD83 or induction of cytokine secretion. These data indicate that SIgA can interact with DC not via CD89, but via carbohydrate-recognizing receptors like mannose receptor and suggest that uptake of SIgA-containing immune complexes by immature DC may be a mechanism to modulate mucosal immune responses.  相似文献   

16.
In inflamed tissues, the reciprocal interaction between Natural Killer (NK) cells and Dendritic Cells (DC) results in a potent activating cross talk that leads to DC maturation and NK cell activation with acquisition of NK-mediated cytotoxicity against immature DC (iDC). We focused our studies on NK-mediated killing of monocyte-derived iDC and we provided evidence that NK cells that express CD94/NKG2A but not killer Ig-like receptors (KIR) are able to kill autologous iDC. Indeed HLA-E (i.e. the cellular ligand of CD94/NKG2A) is sharply reduced in iDC, whereas it is partially recovered in mDC. The latter are lysed only by a small fraction of NK clones characterized by low levels of CD94/NKG2A expression. Another NK receptor, whose surface density is crucial for the ability to kill iDC, is represented by NKp30, a member of the NCR (Natural Cytotoxicity Receptor) family. We showed that transforming growth factor beta1 (TGFbeta1) treatment results in specific downregulation of NKp30 expression. This effect profoundly inhibits the NK-mediated killing of DC suggesting a possible mechanism by which TGFbeta1-producing DC may acquire resistance to the NK-mediated attack.  相似文献   

17.
The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.  相似文献   

18.
CD73-deficient mice are valuable for evaluating the ability of CD73-generated adenosine to modulate adenosine receptor-mediated responses. Here we report the role of CD73 in regulating lymphocyte migration across two distinct barriers. In the first case, CD73-generated adenosine restricts the migration of lymphocytes across high endothelial venules (HEV) into draining lymph nodes after an inflammatory stimulus, apparently by triggering A(2B) receptors on HEV. Secondly, CD73 promotes the migration of pathogenic T cells into the central nervous system during experimental autoimmune encephalomyelitis. Experiments are in progress to determine whether this effect is also adenosine receptor-mediated and to identify the relevant adenosine receptor.  相似文献   

19.
20.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号