首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epinephrine increases net hepatic glucose output (NHGO) mainly via increased gluconeogenesis, whereas glucagon increases NHGO mainly via increased glycogenolysis. The aim of the present study was to determine how the two hormones interact in controlling glucose production. In 18-h-fasted conscious dogs, a pancreatic clamp initially fixed insulin and glucagon at basal levels, following which one of four protocols was instituted. In G + E, glucagon (1.5 ng x kg(-1) x min(-1); portally) and epinephrine (50 ng x kg(-1) x min(-1); peripherally) were increased; in G, glucagon was increased alone; in E, epinephrine was increased alone; and in C, neither was increased. In G, E, and C, glucose was infused to match the hyperglycemia seen in G + E ( approximately 250 mg/dl). The areas under the curve for the increase in NHGO, after the change in C was subtracted, were as follows: G = 661 +/- 185, E = 424 +/- 158, G + E = 1178 +/- 57 mg/kg. Therefore, the overall effects of the two hormones on NHGO were additive. Additionally, glucagon exerted its full glycogenolytic effect, whereas epinephrine exerted its full gluconeogenic effect, such that both processes increased significantly during concurrent hormone administration.  相似文献   

2.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

3.
Using isolated perfused rat liver, the direct effect of secretin, glucagon, caerulein, insulin and somatostatin on choleresis was investigated. When the liver was perfused in the absence of sodium taurocholate, the bile volumes were: control, 0.33 +/- 0.01 (mean +/- S.E.M.) ml/10 g liver per 50 min; secretin 0.05 U/ml, 0.39 +/- 0.01 (P less than 0.01); glucagon 10(-10) M, 0.44 +/- 0.02 (P less than 0.01); caerulein 10(-8) M, 0.34 +/- 0.03 (n.s.); insulin 1 mU/ml, 0.35 +/- 0.02 (n.s.); glucagon plus somatostatin 10(-7) M, 0.46 +/- 0.03 (n.s. vs. glucagon alone), respectively. When 10(-5) M sodium taurocholate was present in the perfusate, the bile volumes were: control, 0.61 +/- 0.03; secretin, 0.63 +/- 0.01 (n.s.); glucagon, 0.70 +/- 0.01 (P less than 0.05); caerulein, 0.55 +/- 0.01 (n.s.); insulin, 0.62 +/- 0.04 (n.s.); somatostatin, 0.59 +/- 0.01 (n.s.); respectively. Glucagon increased glucose output and cyclic AMP in the effluent from the liver neither of which were suppressed by somatostatin. Secretin increased cyclic AMP but not glucose output. These results indicate that glucagon has the most potent action on bile acid-independent canalicular bile, that caerulein and insulin do not act on canalicular bile production directly and that somatostatin does not directly suppress canalicular bile production nor hepatic glucose output produced by glucagon in rats.  相似文献   

4.
S Pek  T Y Tai  A Elster 《Prostaglandins》1975,10(3):493-502
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 x 10(-9) to 1.8 x 10(-5)m PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 X 10(-8) and 1.4 X 10(-7) PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4 X 10(-6)M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 X 10(-6)M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

5.
The effects of 10(-10) to 10(-7) M glucagon on cAMP, phosphorylase a, cell calcium, and glucose production, and glucagon interactions with epinephrine were studied in isolated hepatocytes from adult male and female rats. At physiological concentrations (10(-10) - 10(-9) M), glucagon activated phosphorylase by increasing cAMP and not by raising the cytosolic free calcium. At supra-physiologic concentrations (and in the male only), glucagon slightly increased the cytosolic free calcium, the fractional efflux of calcium, and, after 2 h, decreased the cell calcium content. Exposure of hepatocytes to the simultaneous administration of 10(-9) M glucagon and 10(-7) M epinephrine resulted in a prolongation of the activation of phosphorylase a and a greater release of glucose from glycogen stores than exposure to either agonist alone. In the male, the effects of low concentrations of the two hormones on phosphorylase a activity were additive. Cytosolic free calcium was increased by 10(-6) M epinephrine from 280 to 500 nM while physiological concentrations of glucagon did not change it. In these intact cells, there was no evidence of an alpha 2-adrenergic inhibition of adenyl cyclase and no indication that cAMP depresses the rise in cell calcium induced by alpha-adrenergic stimuli.  相似文献   

6.
Available data on the effect of neuropeptide Y (NPY) on insulin release are conflicting and little data exist regarding the effect of NPY on glucagon secretion. The purpose of the present study, therefore, was to characterize the direct effect of NPY on the release of these pancreatic hormones and to examine the role of glucose on these interactions. Using a perifused mouse islet system, we found that NPY suppressed both basal and glucose-stimulated insulin secretion. Thus, basal insulin release assessed as mean integrated area under the curve/20 min (AUC/20 min) decreased from 1446 +/- 143 pg to 651 +/- 112 pg (P less than 0.05) with the addition of 2 x 10(-8) M NPY and the AUC/20 min for glucose stimulated insulin output decreased from 1973 +/- 248 pg to 1426 +/- 199 pg (P less than 0.05). In both cases, this inhibitory effect was followed after removing NPY by a stimulation of insulin secretion which was typical of a 'rebound off-response'. In contrast, NPY exerted a stimulatory effect on basal glucagon release and significantly reversed the suppressive effect of high glucose on glucagon output. The basal glucagon AUC/20 min increased from 212 +/- 103 pg to 579 +/- 316 pg (P less than 0.05), while glucagon secretion in the presence of 27.7 mM glucose increased from 75 +/- 26 pg to 255 +/- 28 pg (P less than 0.01). In conclusion, we have shown that the direct effect of NPY on the endocrine pancreas is to suppress insulin but stimulate glucagon secretion. These data are compatible with a role for NPY in the regulation of pancreatic hormone output.  相似文献   

7.
The effects of glucose and GIP on glucagon secretion were studied in perifused microdissected murine pancreatic islets. Glucagon levels were determined in effluent samples collected at 1-min intervals by radioimmunoassay using the glucagon-specific antibody, 30 K. There was no significant difference in the total amount (7740 +/- 212 pg vs 8630 +/- 36 pg, n = 10) of glucagon secreted over a 20 min period when the glucose concentration was alternately shifted between 5.5 mM and 11.1 mM, respectively. However, 22.2 mM glucose profoundly suppressed glucagon secretion. The suppressive effect of high glucose on glucagon release was partially, yet significantly, reversed by the presence of GIP, as glucagon secretion increased from a non-detectable level at 22.2 mM glucose alone to 10,175 +/- 145 pg, n = 10 (P less than 0.01). The glucagonotropic effect of GIP was dose-dependent in the range of 2 x 10(-9) - 2 x 10(-7) M, at 11.1 mM glucose. Our data show that GIP is able to substantially reverse the suppressive effect of a high glucose load on glucagon secretion.  相似文献   

8.
The effects of secretin on glucose output and cyclic AMP from the isolated perfused rat liver were investigated. Secretin 0.1 U/ml increased cyclic AMP in the effluent without an increase in glucose output. Glucose output induced by epinephrine 10(-8)M was not affected by secretin 0.1 U/ml administered simultaneously, whereas the increase in cyclic AMP produced by secretin 0.1 U/ml was inhibited by epinephrine 10(-8)M. The increase in cyclic AMP produced by glucagon 10(-10)M was not affected by epinephrine 10(-8)M. These results suggest that secretin does not affect glycogenolysis in the liver and secretin activates adenylate cyclase through a different receptor from glucagon in the liver.  相似文献   

9.
At concentrations around 10(-9) M or higher, glucagon increases cardiac contractility by activating adenylate cyclase/cyclic adenosine monophosphate (AC/cAMP). However, blood levels in vivo, in rats or humans, rarely exceed 10(-10) M. We investigated whether physiological concentrations of glucagon, not sufficient to increase contractility or ventricular cAMP levels, can influence fuel metabolism in perfused working rat hearts. Two distinct glucagon dose-response curves emerged. One was an expected increase in left ventricular pressure (LVP) occurring between 10(-9.5) and 10(-8) M. The elevations in both LVP and ventricular cAMP levels produced by the maximal concentration (10(-8) M) were blocked by the AC inhibitor NKY80 (20 microM). The other curve, generated at much lower glucagon concentrations and overlapping normal blood levels (10(-11) to 10(-10) M), consisted of a dose-dependent and marked stimulation of glycolysis with no change in LVP. In addition to stimulating glycolysis, glucagon (10(-10) M) also increased glucose oxidation and suppressed palmitate oxidation, mimicking known effects of insulin, without altering ventricular cAMP levels. Elevations in glycolytic flux produced by either glucagon (10(-10) M) or insulin (4 x 10(-10) M) were abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (10 microM) but not significantly affected by NKY80. Glucagon also, like insulin, enhanced the phosphorylation of Akt/PKB, a downstream target of PI3K, and these effects were also abolished by LY-294002. The results are consistent with the hypothesis that physiological levels of glucagon produce insulin-like increases in cardiac glucose utilization in vivo through activation of PI3K and not AC/cAMP.  相似文献   

10.
Epinephrine and the alpha-adrenergic agonist phenylephrine activated phosphorylase, glycogenolysis, and gluconeogenesis from lactate in a dose-dependent manner in isolated rat liver parenchymal cells. The half-maximally active dose of epinephrine was 10-7 M and of phenylephrine was 10(-6) M. These effects were blocked by alpha-adrenergic antagonists including phenoxybenzamine, but were largely unaffected by beta-adrenergic antagonists including propranolol. Epinephrine caused a transient 2-fold elevation of adenosine 3':5'-monophosphate (cAMP) which was abolished by propranolol and other beta blockers, but was unaffected by phenoxybenzamine and other alpha blockers. Phenoxybenzamine and propranolol were shown to be specific for their respective adrenergic receptors and to not affect the actions of glucagon or exogenous cAMP. Neither epinephrine (10-7 M), phenylephrine (10-5 M), nor glucagon (10-7 M) inactivated glycogen synthase in liver cells from fed rats. When the glycogen synthase activity ratio (-glucose 6-phosphate/+ glucose 6-phosphate) was increased from 0.09 to 0.66 by preincubation of such cells with 40 mM glucose, these agents substantially inactivated the enzyme. Incubation of hepatocytes from fed rats resulted in glycogen depletion which was correlated with an increase in the glycogen synthase activity ratio and a decrease in phosphorylase alpha activity. In hepatocytes from fasted animals, the glycogen synthase activity ratio was 0.32 +/- 0.03, and epinephrine, glucagon, and phenylephrine were able to lower this significantly. The effects of epinephrine and phenylephrine on the enzyme were blocked by phenoxybenzamine, but were largely unaffected by propranolol. Maximal phosphorylase activation in hepatocytes from fasted rats incubated with 10(-5) M phenylephrine preceded the maximal inactivation of glycogen synthase. Addition of glucose rapidly reduced, in a dose-dependent manner, both basal and phenylephrine-elevated phosphorylase alpha activity in hepatocytes prepared from fasted rats. Glucose also increased the glycogen synthase activity ratio, but this effect lagged behind the change in phosphorylase. Phenylephrine (10-5 M) and glucagon (5 x 10(-10) M) decreased by one-half the fall in phosphoryalse alpha activity seen with 10 mM glucose and markedly suppressed the elevation of glycogen synthase activity. The following conclusions are drawn from these findings. (a) The effects of epinephrine and phenylephrine on carbohydrate metabolism in rat liver parenchymal cells are mediated predominantly by alpha-adrenergic receptors. (b) Stimulation of these receptors by epinephrine or phenylephrine results in activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase by mechanisms not involving an increase in cellular cAMP. (c) Activation of beta-adrenergic receptors by epinephrine leads to the accumulation of cAMP, but this is associated with minimal activation of phosphorylase or inactivation of glycogen synthase...  相似文献   

11.
Islet-activating protein (IAP) is a substance purified from the culture medium of Bordetella pertussis, and its main action is characterized by the enhancement of secretory response to glucose and other stimuli in pancreatic islet. In this experiment, the effect of IAP on epinephrine-induced secretion of immunoreactive insulin (IRI) and glucagon (IRG) was investigated in normal dogs. Epinephrine suppressed IRI secretion and it had a little increment to IRG secretion in control group, while IRI and IRG secretions were significantly increased by epinephrine in IAP pretreated group. Using beta-blocker (Propranolol) with epinephrine, these increments of IRI and IRG secretions in IAP pretreated group were abolished. However, using alpha-blocker (Phentolamine) with epinephrine, these secretions of IRI and IRG in IAP pretreated group were much more increased than epinephrine alone induced secretions. Blood glucose levels were lower in IAP pretreated group than in control group throughout the loading tests in all of the experiments. These findings suggest that (1) IAP decreases blood glucose level and (2) IAP enhances epinephrine-induced secretion of insulin and glucagon by acceleration of beta-adrenergic effect and by reduction of alpha-adrenergic suppression in dogs.  相似文献   

12.
Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release of insulin by 30% and maintained that level for the full 30-min test period. The rate of insulin release returned to the glucose-induced base line after removal of the peptide. The same insulin level was produced by 3 x 10(-9) M glucagon, and at 3 x 10(-7) M glucagon insulin release was enhanced 290% above the glucose base line.  相似文献   

13.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and the effect of epinephrine, glucagon and insulin on glycogenolysis was studied. Both glucagon and epinephrine at the concentration of 10?6M, stimulated gluconeogenesis by 80–100%. Addition of insulin (33 μUnits/ml) completely abolished the epinephrine-stimulated glycogenolysis whereas only 50% inhibition was observed with insulin in glucagon stimulated glycogenolysis. This stimulation was observed within 2–5 min after the addition of the hormones. These results suggest that hepatocytes isolated with low concentrations of collagenase retain glucagon, epinephrine and insulin receptor sites.  相似文献   

14.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

15.
Conclusions drawn from the pancreatic (or islet) clamp technique (suppression of endogenous insulin, glucagon, and growth hormone secretion with somatostatin and replacement of basal hormone levels by intravenous infusion) are critically dependent on the biological appropriateness of the selected doses of the replaced hormones. To assess the appropriateness of representative doses we infused saline alone, insulin (initially 0.20 mU.kg(-1).min(-1)) alone, glucagon (1.0 ng.kg(-1).min(-1)) alone, and growth hormone (3.0 ng.kg(-1).min(-1)) alone intravenously for 4 h in 13 healthy individuals. That dose of insulin raised plasma insulin concentrations approximately threefold, suppressed glucose production, and drove plasma glucose concentrations down to subphysiological levels (65 +/- 3 mg/dl, P < 0.0001 vs. saline), resulting in nearly complete suppression of insulin secretion (P < 0.0001) and stimulation of glucagon (P = 0.0059) and epinephrine (P = 0.0009) secretion. An insulin dose of 0.15 mU.kg(-1).min(-1) caused similar effects, but a dose of 0.10 mU.kg(-1).min(-1) did not. The glucagon and growth hormone infusions did not alter plasma glucose levels or those of glucoregulatory factors. Thus, insulin "replacement" doses of 0.20 and even 0.15 mU.kg(-1).min(-1) are excessive, and conclusions drawn from the pancreatic clamp technique using such doses may need to be reassessed.  相似文献   

16.
Insulin (10nM) completely suppressed the stimulation of gluconeogenesis from 2 mM lactate by low concentrations of glucagon (less than or equal to 0.1 nM) or cyclic AMP (less than or equal to 10 muM), but it had no effect on the basal rate of gluconeogenesis in hepatocyctes from fed rats. The effectiveness of insulin diminished as the concentration of these agonists increased, but insulin was able to suppress by 40% the stimulation by a maximally effective concentration of epinephrine (1 muM). The response to glucagon, epinephrine, or insulin was not dependent upon protein synthesis as cycloheximide did not alter their effects. Insulin also suppressed the stimulation by isoproterenol of cyclic GMP. These data are the first demonstration of insulin antagonism to the stimulation of gluconeogenesis by catecholamines. Insulin reduced cyclic AMP levels which had been elevated by low concentrations of glucagon or by 1 muM epinephrine. This supports the hypothesis that the action of insulin to inhibit gluconeogenesis is mediated by the lowering of cyclic AMP levels. However, evidence is presented which indicates that insulin is able to suppress the stimulation of gluconeogenesis by glucagon or epinephrine under conditions where either the agonists or insulin had no measurable effect on cyclic AMP levels. Insulin reduced the glucagon stimulation of gluconeogenesis whether or not extracellular Ca2+ were present, even though insulin only lowered cyclic AMP levels in their presence. Insulin also reduced the stimulation by epinephrine plus propranolol where no significant changes in cyclic AMP were observed without or with insulin. In addition, insulin suppressed gluconeogenesis in cells that had been preincubated with epinephrine for 20 min, even though the cyclic AMP levels had returned to near basal values and were unaffected by insulin. Thus insulin may not need to lower cyclic AMP levels in order to suppress gluconeogenesis.  相似文献   

17.
Epinephrine inhibits insulin-stimulated muscle glucose transport.   总被引:2,自引:0,他引:2  
We recently demonstrated that epinephrine could inhibit the activation by insulin of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase) in skeletal muscle (Hunt DG, Zhenping D, and Ivy JL. J Appl Physiol 92: 1285-1292, 2002). Activation of PI3-kinase is recognized as an essential step in the activation of muscle glucose transport by insulin. We therefore investigated the effect of epinephrine on insulin-stimulated glucose transport in both fast-twitch (epitrochlearis) and slow-twitch (soleus) muscle of the rat by using an isolated muscle preparation. Glucose transport was significantly increased in the epitrochlearis and soleus when incubated in 50 and 100 microU/ml insulin, respectively. Activation of glucose transport by 50 microU/ml insulin was inhibited by 24 nM epinephrine in both muscle types. This inhibition of glucose transport by epinephrine was accompanied by suppression of IRS-1-associated PI3-kinase activation. However, when muscles were incubated in 100 microU/ml insulin, 24 nM epinephrine was unable to inhibit IRS-1-associated PI3-kinase activation or glucose transport. Even when epinephrine concentration was increased to 500 nM, no attenuating effect was observed on glucose transport. Results of this study indicate that epinephrine is capable of inhibiting glucose transport activated by a moderate, but not a high, physiological insulin concentration. The inhibition of glucose transport by epinephrine appears to involve the inhibition of IRS-1-associated PI3-kinase activation.  相似文献   

18.
19.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号