首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of prostaglandin E2 (PGE2), forskolin, and dibutyryl cAMP on arachidonic acid release, inositol phospholipid metabolism, and Ca2+ mobilization was investigated. The chemotactic tripeptide (formylmethionyl-leucyl-phenylalanine (fMLP))-induced arachidonic acid release in neutrophils was significantly inhibited by PGE2, forskolin, and dibutyryl cAMP. Among them, PGE2 was found to be the most potent inhibitor. However, when neutrophils were stimulated by Ca2+ ionophore A23187, such inhibitory effect by these agents was less marked. PGE2 also suppressed the enhanced incorporation of [32P]Pi into phosphatidic acid (PA) and phosphatidylinositol in a dose-dependent manner in fMLP-stimulated neutrophils. Also in this case, Ca2+ ionophore-induced alterations were hardly inhibited by PGE2. As well, PGE2 inhibited the fMLP-induced decrease of [3H]arachidonic acid in phosphatidylcholine and phosphatidylinositol and the increase in PA very significantly. But the inhibitory effect by PGE2 was found to be weak in Ca2+ ionophore-stimulated neutrophils. These results suggest that a certain step from receptor activation to Ca2+ influx is mainly inhibited by PGE2. Concerning polyphosphoinositide breakdown, PGE2 did not affect the fMLP-induced decrease of [32P]phosphatidylinositol 4,5-bisphosphate which occurred within 10 s but inhibited the subsequent loss of [32P]phosphatidylinositol 4-phosphate and [32P]phosphatidylinositol, suggesting that the compensatory resynthesis of phosphatidylinositol 4,5-bisphosphate was inhibited. On the other hand, fMLP-induced diacylglycerol formation was suppressed for the early period until 1 min, but with further incubation, diacylglycerol formation was rather accelerated by PGE2. Moreover, the inhibition of PA formation by PGE2 became evident after a 30-s time lag, suggesting that the conversion of diacylglycerol to PA is inhibited by PGE2. The formation of water-soluble products of inositol phospholipid degradation by phospholipase C, such as inositol phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate, was also suppressed by PGE2 treatment. However, the inhibition was not so marked as that of arachidonic acid release and PA formation. Thus, PGE2 appeared to inhibit not only initial events such as polyphosphoinositide breakdown but also turnover of inositol phospholipids. PGE2, forskolin, and dibutyryl cAMP did not block the rapid elevation of intracellular Ca2+ which was observed within 10 s in fMLP-stimulated neutrophils. However, subsequent increase in intracellular Ca2+ which was caused from 10 s to 3 min after stimulation was inhibited by PGE2, forskolin, and dibutyryl cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. Gel-filtered human platelets prelabeled with [32P]Pi or [3H]glycerol were exposed to 0-0.3 U/ml of thrombin and analyzed for radioactivities and masses in the phosphoinositides, inositol trisphosphates (IP3), phosphatidic acid (PA) and diacylglycerol (DAG) at 15 and 180 sec of stimulation. 2. At thrombin concentrations below 0.1 U/ml, PA and IP3 accumulated in equimolar amounts. 3. The production and disappearance of the metabolites of the polyphosphoinositide cycle was balanced during 180 sec of stimulation with 0.03-0.1 U/ml of thrombin. 4. Under these conditions no increase in [3H]DAG or [3H]monoacylglycerol could be detected. 5. The data indicate that all DAG is converted to PA and support our conclusion that phosphatidylinositol 4,5-bisphosphate represents the major source for production of DAG upon stimulation of human platelets with low concentrations of thrombin.  相似文献   

3.
The addition of thrombin to human platelets prelabeled with 32Pi led to significant loss of radioactivity in phosphatidylinositol 4,5-bisphosphate within 5 s, followed by recovery or even increase by 2 min. Loss of label from phosphatidylinositol phosphate was much less marked. Stimulated loss of label from phosphatidylinositol was not seen, while labeled phosphatidate increased severalfold. The principal labeled water-soluble phosphates observed, in addition to 32Pi and [32P] ATP, co-migrated with inositol diphosphate and inositol triphosphate. This suggests that a pool of polyphosphoinositides is constantly undergoing phosphodiesteratic cleavage and resynthesis. Thrombin addition led to rapid increase in radioactivity in inositol triphosphate, but not in inositol diphosphate. We conclude that this early consequence of the thrombin-platelet interaction is the result of an increase in the phosphodiesteratic cleavage of phosphatidylinositol bisphosphate.  相似文献   

4.
We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism.  相似文献   

5.
Gel-filtered human platelets that had been pre-labelled with [32P]Pi were stimulated with thrombin, ionomycin or the phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA). The effect of the hexacationic aminoglycoside antibiotic, neomycin, on platelet physiological responses, such as aggregation and secretion, as well as changes in phosphoinositide metabolism was studied. Neomycin strongly inhibited thrombin-induced aggregation and secretion whereas the antibiotic had no effect on ionomycin- or TPA-induced platelet functions. The thrombin-induced enhancement of inositol phospholipid metabolism was strongly inhibited by the presence of neomycin whereas the TPA- or ionomycin-induced increase in inositol [32P]polyphospholipids remained unaffected. The inhibitory effect of some other aminoglycoside antibiotics was compared to that of neomycin and the data demonstrate that the inhibition of platelet secretion and phosphatidic acid production was dependent on the cationic charge of the antibiotic. It is suggested that neomycin inhibits signal transduction in platelets at a level prior to the inositol-phospholipid-specific phosphodiesterase.  相似文献   

6.
1. By rapid fractionation of blood platelet lysates on Percoll density gradients at alkaline pH (9.6), a very pure plasma-membrane fraction was obtained, as well as discrimination between endoplasmic reticulum and lysosomes. 2. Labelling of intact platelets with [32P]Pi followed by subcellular fractionation showed an exclusive localization of all inositol lipids in the plasma membrane. 3. Preincubation of whole platelets with myo-[3H]inositol in a buffer containing 1 mM-MnCl2 allowed incorporation of the label into PtdIns (phosphatidylinositol) of both plasma and endoplasmic-reticulum membrane, whereas [3H]PtdIns4P (phosphatidylinositol 4-phosphate) and [3H]PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) were exclusively found on the plasma membrane. 4. It is concluded that PtdIns4P and PtdIns(4,5)P2 are exclusively localized in the plasma membrane, whereas PtdIns is present in both plasma and endoplasmic-reticulum membranes. This could provide an explanation for previously reported data on hormone-sensitive and -insensitive inositol lipid pools.  相似文献   

7.
Increasing concentrations of chlorpromazine (30-500 microM) caused a progressive lysis of gel-filtered platelets, as monitored by the extracellular appearance of cytoplasmic ([14C]adenine-labelled) adenine nucleotides. The chlorpromazine-induced lysis was markedly enhanced by thrombin and phorbol ester, and complete cytolysis was found at chlorpromazine concentrations of 100 microM and above in the presence of thrombin. At non-lytic concentrations, chlorpromazine caused a dramatic increase in the thrombin- or phorbol ester-mediated incorporation of 32P into phosphatidylinositol 4-phosphate and, to a lesser extent, into phosphatidylinositol 4,5-bisphosphate in platelets pulse-labelled with [32P]Pi. Chlorpromazine alone also caused an incorporation of 32P into the phosphoinositides. Non-lytic concentrations of chlorpromazine had no effect on the phosphorylation of the 47 kDa protein (regarded as the substrate for protein kinase C), but markedly inhibited the accompanying secretion of ATP + ADP and beta-hexosaminidase when platelets were incubated with 0.17 microM-phorbol ester or 0.1-0.2 unit of thrombin/ml. At lower concentrations of thrombin, chlorpromazine did not inhibit, but slightly enhanced, secretion. A protein of 82 kDa was phosphorylated during the interaction of platelets with thrombin and phorbol ester, and this phosphorylation was enhanced by chlorpromazine (non-lytic). These results suggest that the previously reported inhibition of protein kinase C by chlorpromazine is probably non-specific and due to cytolysis. However, since non-lytic concentrations of chlorpromazine inhibit secretion, but not protein kinase C, in platelets, activation of protein kinase C is not involved in the stimulation-secretion coupling, or chlorpromazine acts at a step after kinase activation. Possible mechanisms of this inhibition by chlorpromazine are discussed in the light of its effect on phosphoinositide metabolism and protein phosphorylation.  相似文献   

8.
Upon stimulation with serotonin of washed human platelets prelabeled with [32P]orthophosphate, we found an approximately 250% increase in [32P]phosphatidic acid (PA) formation, a small decrease in [32P]phosphatidylinositol 4,5-bisphosphate, and a concomitant increase in [32P]phosphatidylinositol 4-phosphate. Using [3H]arachidonate for prelabeling, [3H]diacylglycerol accumulated transiently at 10 s after addition of the agonist, [3H]PA increased but to a lower extent compared to 32P-labeled lipid, and the formation of both [3H]polyphosphoinositides increased. The serotonin-induced dose-dependent changes in [32P]PA correlate with its effect on the changes in slope of aggregation of platelets. The potency of 13 drugs to antagonize the serotonin-induced PA formation closely corresponds to both their potency to inhibit platelet aggregation and their binding affinity for serotonin-S2 receptor sites. It is suggested that at least part of the signal transducing system following activation of the serotonin-S2 receptors involves phospholipase C catalyzed inositol lipid breakdown yielding diacylglycerol which is subsequently phosphorylated to PA.  相似文献   

9.
The metabolic activity of the polyphosphoinositol lipids in unstimulated human platelets was studied by short-term labelling with [32P]Pi, by replacement of [32P]Pi from pre-labelled platelets with unlabelled phosphate, and by depriving the cells of metabolic ATP. Under short-term labelling conditions, the 4- and 5-phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] had the same specific 32P radioactivity as the gamma-phosphate of metabolic ATP. The specific 32P radioactivity of the 1-phosphates of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2 was similar, but only 4-13% compared to that of the ATP-gamma-phosphate. When [32P]Pi pre-labelled platelets were incubated with up to 25 mM of unlabelled phosphate, the displacement of the 32P label from PtdIns4P, PtdIns(4,5)P2 and metabolic ATP followed similar kinetics. Inhibition of ATP regeneration in platelets pre-labelled with [32P]Pi resulted in a rapid fall in metabolic ATP with a much slower fall in [32P]PtdIns(4,5)P2, whereas [32P]PtdIns4P increased initially. However, ATP turnover was not abolished, as indicated by the marked (25% of the control) incorporation of extracellular [32P]Pi into PtdIns4P and PtdIns(4,5)P2 in metabolically inhibited platelets. This low phosphate turnover may explain the relative resistance of PtdIns4P and PtdIns(4,5)P2 to metabolic inhibition. We conclude that PtdIns4P and PtdIns(4,5)P2 are present as a single metabolic pool in human platelets. Turnover of the 4- and 5-phosphates of PtdIns4P and PtdIns(4,5)P2 in unstimulated platelets is as rapid as that of the gamma-phosphate of metabolic ATP, and accounts for about 7% of basal ATP consumption.  相似文献   

10.
Human platelets were labelled with [32P]Pi and [3H]glycerol before gel filtration. In unstimulated cells, the specific 32P radioactivity in phosphatidic acid (PtdOH) was similar to that of phosphatidylinositol (PtdIns) but only 4% of that of the gamma-phosphate of ATP. Upon 3 min of stimulation with 0.5 U/ml of thrombin, there was a 20-fold increase in specific 32P radioactivity of PtdOH which approached that of the ATP gamma-phosphate. Based on constant rates of synthesis and removal, this thrombin-induced increase in specific 32P radioactivity in PtdOH allowed us to calculate the flux of phosphate through PtdOH upon stimulation. Synthesis and removal occurred at rates of 107 and 52 nmol min-1/10(11) cells, respectively. The specific [3H]glycerol radioactivity was similar in PtdIns, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in unstimulated platelets. In PtdOH, it was 50% of that of the inositol phospholipids. Thrombin stimulation induced no changes in the specific 3H radioactivity of the inositol phospholipids whereas specific [3H]PtdOH increased to the level of these lipids. It is concluded that PtdIns, PtdInsP and PtdInsP2 exist in a metabolic homogenous pool in human platelets.  相似文献   

11.
Previous studies indicated that thrombin-stimulation of platelets prelabeled with [3H]inositol or [32P]orthophosphate results in an increase of radioactive inositol triphosphate, a substance thought to modulate the levels of free intracellular calcium. In the present study, we improved the method of resolution of inositol triphosphate from other compounds that are also labeled with [32P]orthophosphate using a combination of enzyme treatment and electrophoresis. We have further demonstrated that the specific activities of metabolic ATP and phosphatidylinositol diphosphate (the precursor of inositol triphosphate) are identical in [32P]orthophosphate-labeled platelets. It follows that the amount of inositol triphosphate is proportional to its radioactivity in the metabolic compartment of the cells. Using this protocol, the concentration of inositol triphosphate in resting and thrombin-stimulated platelets were determined to be 1-4 and 10-30 pmol/10(8) cells, respectively.  相似文献   

12.
The uptake of [32P]phosphate by human, gel-filtered blood platelets and its incorporation into cytoplasmic ATP and polyphosphoinositides was studied. In unstimulated platelets, uptake was Na+o-dependent and saturable at approximately 20 nmol/min/10(11) cells with a half-maximal rate at 0.5 mM extracellular phosphate. Upon stimulation with thrombin or collagen, net influx of [32P]Pi was accelerated 5- to 10-fold. With thrombin, [32P]Pi efflux was also increased. After the first 2 min, efflux exceeded influx, resulting in the net release of [32P]Pi from the platelets. Since the stimulus-induced burst in [32P]Pi uptake paralleled the secretory responses, it might be an integral part of stimulus-response coupling in platelets. The stimulus-induced burst in net [32P]Pi uptake led to an enhanced labeling of metabolic ATP, which was already detectable at 5 s after stimulation with thrombin. Concomitantly, the incorporation of [32P]Pi into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was accelerated. The thrombin-induced increase in specific 32P radioactivity of cytoplasmic ATP fully accounted for the simultaneous increase in specific 32P radioactivity of these phosphoinositides. In studying the extent of 32P labeling of phosphorylated compounds in response to a cellular stimulus, it is therefore essential to measure the effect of the stimulus on the specific radioactivity of cytoplasmic ATP.  相似文献   

13.
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.  相似文献   

14.
Human platelets incubated with [32P]Pi and [3H]arachidonate were transferred to a Pi-free Tyrode's solution by gel filtration. The labile phosphoryl groups of ATP and ADP as well as Pi in the metabolic pool of these platelets had equal specific radioactivity which was identical to that of[32P]phosphatidate formed during treatment of the cells with thrombin for 5 min. Therefore, the 32P radioactivity of phosphatidate was a true, relative measure for its mass. The thrombin-induced formation of[32P]-phosphatidate had the same time course and dose-response relationships as the concurrent secretion of acid hydrolases. 125I-alpha-Thrombin bound maximally to the platelets within 13s and was rapidly dissociated from the cells by hirudin; readdition of excess 125I-alpha-thrombin caused rapid rebinding of radioligand. This binding-dissociation-rebinding sequence was paralleled by a concerted start-stop-restart of phosphatidate formation and acid hydrolase secretion. [3H]Phosphatidylinositol disappearance was initiated upon binding but little affected by thrombin dissociation and rebinding. ATP deprivation caused similar changes in the time courses for [32P]-phosphatidate formation and acid hydrolase secretion which were different from those of [3H]phosphatidylinositol disappearance. The metabolic stress did not alter the magnitude (15%) of the initial decrease in phosphatidylinositol-4,5-bis[32P]phosphate, but did abolish the subsequent increase of phosphatidylinositol-4,5-bis[32P]-phosphate in the thrombin-treated platelets. It is concluded that in thrombin-treated platelets (1) phosphatidate synthesis, but not phosphatidylinositol disappearance, is tightly coupled to receptor occupancy and acid hydrolase secretion in platelets, (2) successive phosphorylations to phosphatidylinositol-4,5-bisphosphate is unlikely to be the main mechanism for phosphatidylinositol disappearance, and (3) only a small fraction (15%) of phosphatidylinositol-4,5-bisphosphate is susceptible to hydrolysis.  相似文献   

15.
Stimulation of washed rabbit platelets with AGEPC (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) caused a 15–20% decrease in their phosphatidylinositol level within 15 seconds without affecting other major classes of phospholipids. In the same time frame the level of phosphatidic acid (PA) increased dramatically some four fold. LysoGEPC, which is inactive in stimulating rabbit platelets, did not cause any change in PI or PA. When [32Pi] was present during the stimulation of platelets by AGEPC, the incorporation of radiolabel into PI-4-phosphate (DPI), PI-4,5-bis phosphate (TPI) and PA was enhanced significantly within one minute while the incorporation into PI increased only after one minute. These results clearly established that AGEPC induced stimulation of rabbit platelets was associated with the metabolism of inositol phospholipids and phosphatidic acid. The relevance of these findings to the mode of action of AGEPC and Ca2+ mobilization is also discussed.  相似文献   

16.
Changes in phosphoinositide metabolism were examined in washed rabbit platelets stimulated with 0.5 microM-ADP, 50 microM-adrenaline, or ADP and adrenaline in combination. Adrenaline does not stimulate platelet aggregation when used alone, but does potentiate aggregation stimulated by ADP. In platelets prelabelled with [32P]Pi and [3H]glycerol, adrenaline was found to potentiate the ADP-induced changes in platelet phospholipids, causing larger increases in the amount and labelling of phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid than was observed with ADP alone. The combination of ADP and adrenaline did not produce a greater decrease in phosphatidylinositol 4,5-bisphosphate (PIP2) than was produced by ADP alone. In platelets prelabelled with [3H]inositol, adrenaline potentiated the increases in labelling of inositol phosphate and inositol bisphosphate stimulated by ADP; no increase in inositol trisphosphate labelling was detected with ADP alone or with the combination of ADP and adrenaline. Phentolamine, an alpha-adrenergic-receptor antagonist, blocked potentiation by adrenaline of ADP-induced changes in phosphoinositide metabolism. Propranolol and sotalol, beta-adrenergic-receptor antagonists, augmented the potentiation; this is consistent with the concept that the effect of adrenaline is mediated by beta-adrenergic receptors. The effect of adrenaline on phosphoinositide metabolism appears to be to potentiate the mechanisms by which ADP causes turnover of PIP and possibly degradation of PI, rather than the mechanism by which PIP2 is decreased.  相似文献   

17.
Platelet-activating factor stimulates phosphatidylinositol turnover in human platelets as indicated by [32P]phosphatidate accumulation in platelets pre-labelled with [32P]Pi, and by [3H]phosphatidate accumulation and [3H]phosphatidylinositol loss in platelets pre-labelled with [3H]arachidonate. These effects of platelet-activating factor are direct and are independent of the production and/or release of endogenous platelet agonists such as ADP, 5-hydroxytryptamine and thromboxane A2.  相似文献   

18.
The potential role of receptor-stimulated phosphatidylinositol (PI) hydrolysis in a signal transduction mechanism has been increasingly recognized. Earlier studies have suggested a defect in alpha-adrenergic receptor function in the platelets of schizophrenic patients. Little is known, however, about the mechanisms for PI synthesis, breakdown, and regulation in schizophrenia. The present study was undertaken to investigate the metabolic turnover of inositol phospholipids and inositol phosphates by incorporation of [3H]myoinositol or [32P]orthophosphate into resting and activated platelets of normal controls and schizophrenic patients with and without neuroleptic treatment. After 5 h incubation at 37 degrees C, the majority of [3H]myoinositol was incorporated into platelet PI. Following thrombin-induced platelet activation, there was rapid formation of 3H-labeled inositol phosphates (IPs) with inositol monophosphate (IP1) being the most abundant product. The thrombin-induced formation of platelet IPs was found significantly higher in both haloperidol-stabilized and drug-free schizophrenics than in normal control subjects. When platelets were prelabeled with [32P]orthophosphates, thrombin-induced formation of phosphatidic acid (PA) was also significantly higher in haloperidol-stabilized schizophrenics than in normal controls. It is thought that thrombin-induced platelet activation is mediated through hydrolysis of polyphosphoinositides (poly-PI). The present data thus may reflect an increased signal transduction in schizophrenia, which is mediated through neuroleptic-regulated inositol phospholipid hydrolysis.  相似文献   

19.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

20.
The effect of 0.5 mmol/l chlorpromazine (CPZ) on phospholipid metabolism, ATP content, and protein phosphorylation was studied in isolated human platelets. After 30 min incubation CPZ reduced the ATP content of the cells to 17% of the control. At the same time, the radioactivity in 32P prelabelled inositol lipids--phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol (PI), and phosphatidic acid (PA) decreased to 30, 51, and 61% of the controls, respectively, whereas an increase up to 188% of the control was observed in phosphatidylinositol 4-phosphate (PIP). A massive dephosphorylation of proteins was found. Thrombin, added to 32P prelabelled platelets for 90 s, increased the levels of radioactivity in phosphoinositides and PA. When added to CPZ--pretreated 32P prelabelled platelets, thrombin decreased the radio-activity in PIP2, PIP, and PA to 4, 86, and 10% of the control, respectively. We assume that the pharmacological effect of CPZ might be connected with the decreased ATP content, decreased PIP2 pool and with the impairment of protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号