首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin stimulates Na+/H+ exchange in vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The effect of endothelin (ET) on the intracellular pH (pHi) of vascular smooth muscle cells (VSMC), was investigated using a fluorescent pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). ET at concentrations of over 10(-9) M caused dose-dependent transient acidification followed by Na(+)-dependent and amiloride-sensitive alkalization of the cells due to stimulation of Na+/H+ exchange. The alkalization induced by ET was Ca2(+)-dependent and was inhibited by a calcium channel blocker, nicardipine. Pretreatment with H-7, an inhibitor of protein kinase C, also inhibited the ET-induced cell alkalization. These results indicate that ET stimulates Na+/H+ exchange, resulting in alkalization of VSMC and that this ET-induced cell-alkalization is probably linked to Ca2+ influx and activation of protein kinase C.  相似文献   

2.
3.
We have studied the activity of the Na+/H+ exchanger during dimethyl sulfoxide (Me2SO)-induced maturation of the human promyelocytic leukemia cell line HL-60. 22Na uptake was measured in cells preloaded with Li+ or NH+4 in order to specifically activate the Na+/H+ exchanger. Measurement of the rate of uptake as a function of sodium concentration revealed a decrease in Km for Na+ from 38 +/- 3 to 13 +/- 1 mM after 20-24-h treatment with Me2SO. Vmax was not changed significantly. Inhibition of the exchanger by dimethylamiloride (DMA) and by acidic external pH was similar in treated and untreated cells. Thus it is unlikely that the Na+ binding site is altered. A change, however, was observed in the regulation of the exchanger by intracellular pH. In control cells maximal stimulation of the Na+ uptake was observed when the intracellular pH decreased from 7.25 to 7.00. In Me2SO-treated cells the 22Na uptake at intracellular pH 7.00 was greater than in the control and continued to increase as the intracellular pH was adjusted below 7.00, down to 6.75. This suggests that the Na+/H+ exchanger in Me2SO-treated cells is altered structurally in its allosteric H+ binding site. The appearance of this modified exchanger preceded by a period of days the appearance of a functional property characteristic of mature granulocytes, that is, the capability to produce superoxide, suggesting that the modified exchanger may be required for the expression of the mature phenotype. A second modification, a decrease in the Vmax of the 22Na uptake, occurred after 2 days treatment with Me2SO. This reduction may reflect a decrease in the number of functioning exchangers per cell.  相似文献   

4.
Angiotensin II, a potent vasoconstrictor, is known to stimulate Ca2+ mobilization and Na+ influx in vascular smooth muscle cells (VSMC). The fact that the Na+/H+ exchange inhibitor, amiloride, blocks angiotensin II-stimulated Na+ influx and is itself a vasodilator suggests that Na+/H+ exchange may play a role in the angiotensin II-mediated effects on VSMC. We have used a pH-sensitive fluorescent dye to study Na+/H+ exchange in cultured rat aortic VSMC. Basal intracellular pH was 7.08 in physiological saline buffer. Angiotensin II stimulation caused an initial transient acidification, followed by a Na+-dependent alkalinization. Angiotensin II increased the rate of alkalinization with apparent threshold, half-maximal, and maximal effect of 0.01, 3, and 100 nM, respectively. Angiotensin II stimulation appeared to be mediated by a shift in the Km of the Na+/H+ exchanger for extracellular Na+. Since angiotensin II activates phospholipase C in VSMC, we tested the possibility that angiotensin II increased Na+/H+ exchange by activation of protein kinase C via stimulation of diacylglycerol formation. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated Na+/H+ exchange in VSMC cultured for 24 h in serum-free medium, and the subsequent angiotensin II response was inhibited. However, VSMC grown in serum and treated for 24 h with TPA to decrease protein kinase C activity showed no inhibition of angiotensin II-stimulated Na+/H+ exchange. TPA caused no intracellular alkalinization of VSMC grown in serum, while the angiotensin II response was actually enhanced compared to VSMC deprived of serum for 24 h. We conclude that angiotensin II stimulates an amiloride-sensitive Na+/H+ exchange system in cultured VSMC which is mediated by protein kinase C-dependent and -independent mechanisms. Angiotensin II-mediated Na+ influx and intracellular alkalinization may play a role in excitation-response coupling in vascular smooth muscle.  相似文献   

5.
The role of intracellular pH in ligand internalization   总被引:1,自引:0,他引:1  
Internalization of EGF and transferrin measured as the rate of uptake of 125I-labeled ligands was compared in the cell line CCL39 and a mutant derivative, PS-120, lacking the Na+/H+ antiport system. No significant alteration was detected between the two cell lines. In contrast, pretreatment of the mutant cells PS-120 with 20 mM NH4Cl for 30 min to decrease persistently intracellular pH resulted in an increase in 125I-EGF and 125I-transferrin uptake by 60% and 25%, respectively. However, similar NH4Cl pretreatment of the parental cell line, CCL-39, which only affected intracellular pH very transiently did not cause an increase of ligand uptake. The binding of 125I-EGF to CCL-39 and PS-120 cells with or without NH4Cl pretreatment showed that NH4Cl pretreatment did not affect EGF binding in either CCL-39 or PS-120 cells. Since cells regulate intracellular pH by ion transport systems, we also examined the role of Na+, K+-ATPase. Ouabain, an inhibitor of Na+, K+-ATPases, showed no effect on 125I-EGF uptake in either of the cell types with or without NH4Cl pretreatment. Taken together, these results suggest that the plasma membrane-bound Na+/H+ antiport, a major pHi-regulating system in vertebrates, indirectly plays a role in ligand internalization through regulation of intracellular pH.  相似文献   

6.
Hypertrophy of vascular smooth muscle cells (VSMC) is a pathogenic feature of hypertension which may contribute to abnormal vessel tone and function. As a consequence of the increase in cell size associated with hypertrophy, it is likely that alterations in the mechanisms that regulate VSMC intracellular volume occur. Because the Na+/H+ exchanger plays an important role in volume regulation and because we previously observed long term alterations in Na+/H+ exchange and pHi in response to angiotensin-II-induced (ang II) hypertrophy, we studied cell-acidifying mechanisms. To do this, we measured alkaline recovery from NH4Cl-mediated alkalinization, using the fluorescent dye, 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. VSMC were growth-arrested (0.4% calf serum for 24 h) or hypertrophied (100 nM ang II in 0.4% calf serum for 24 h). Ang II-treated cells exhibited a 107% increase in alkaline recovery over control cells (13.86 +/- 1.87 versus 6.68 +/- 1.01 mmol H+/min/liter cells). The increase in alkaline recovery was not a result of increased Cl-/HCO-3 exchange becaue it was not HCO-3 dependent nor inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid. Studies with bumetanide and the sterically inhibited substrate N(CH3)4+ showed that the alkaline recovery was mediated by NH4+ transport via the Na/K/2Cl cotransporter. Ang II-treated cells exhibited a 334% increase in bumetanide-sensitive alkaline recovery over control cells (9.16 +/- 1.90 versus 2.11 +/- 1.46 mmol H+/min/liter cells). Ang II-treated cells also exhibited a 90% increase in bumetanide-sensitive 86Rb uptake over control cells. These findings demonstrate that Na/K/2Cl cotransport activity is specifically induced in ang II-hypertrophied VSMC and establish this transporter as a component of the hypertrophic growth response.  相似文献   

7.
The purpose of this study is to assess the effect of an apparent alteration in intracellular pH and the effect of amiloride on the activity of the Na+/H+ antiporter in perfused rat kidney. Rat kidney-Na+ retention was determined using tracer 22Na in perfusate composed of HCl-glycine buffer (pH 3.80 to pH 5.92) or NH4OH-glycine buffer (pH 6.22-7.95) containing Na+ to match physiologic concentrations. Plotting renal Na+ retention for 10 min versus pH in absence of amiloride showed two classical uncompetitive activator curves for H+, one curve from pH 4.19 to 5.10 and another from pH 6.22 to 7.95. H+ acts as an uncompetitive reversible binding substrate with the receptor triggering activation of the exchanger already sequestered with Na+, thus yielding two Ka values for the exchanger suggesting non-first order kinetics. Using an equation derived for uncompetitive-activation binding of Nao+ and Hi+, plotting [mM Na+ mg protein-1 10 min-1]-1 versus [H+], two linear plots are observed on Cartesian coordinates with abscissa intersecting at 47 +/- 1 microM, pKa = 4.32 +/- 0.02 (pH 4.19-5.10) and 4.21 +/- 0.02 microM, pKa = 5.38 +/- 0.01 (pH 6.22-7.95), respectively. Perfusing buffer containing 2 mM amiloride, completely inactivated the antiporter showing stronger inhibition between pH 3.80 and 5.92. Results suggest the presence of two uncompetitive binding sites for H+ with the Na+/H+ exchanger. One is a high affinity binding site at physiological intracellular apparent pH, and another is a low affinity binding site at ischaemic apparent pH, implying the existence of two titration sites for intracellular pH regulation.  相似文献   

8.
The aim of this study was to investigate the effect of NH4+ on the intracellular pH in TALH SVE.1 cells derived from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. These cells are specialized to perform NH4+ transport in vivo. Intracellular pH was monitored by 31P-NMR. The steady state intracellular pH (pHi) under standard conditions was 7.24 +/- 0.04 (n = 46). Exposure to NH4Cl resulted in an initial intracellular acidification of the TALH SVE.1 cells, followed by a recovery to the initial steady-state pHi value. The NH4(+)-induced acidification followed saturation kinetics up to 20 mM NH4Cl (delta pHmax = 0.2 pHunits). Half-maximal acidification was observed at 0.6 mmol/l. The intracellular acidification due to NH4Cl exposure was completely inhibited by 0.1 mM of the diuretic bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter. The effect of bumetanide was dose-dependent and a Ki value of 8.10(-7) M was calculated. NH4+ influx via K+ channels or the (Na+ + K+)ATPase could not be detected. pHi recovery to the initial value was caused mainly by amiloride-sensitive Na+/H+ exchange and to a lesser extent by an amiloride-insensitive system, which was not studied in detail. In the presence of bumetanide, pulses of high concentrations of NH4Cl induced small intracellular alkalinizations. From these experiments, an intrinsic buffer capacity (beta i) in TALH SVE.1 cells of 26 +/- 3 mM x pH-1 (pHi = 7.65) was determined. It could also be shown that the TALH SVE.1 cells exhibit maximal 'functional buffer capability' between pHout 6.9 and 7.3. Within these limits the cells can maintain their intracellular pH at a constant level, even though the extracellular pH changes. These data strongly suggest that the Na+/K+/2Cl- cotransporter is the main site of NH4+ entry into rabbit thick ascending limb cells in culture. A high intracellular buffer capacity and potent acid extrusion mechanism cooperate in counteracting the intracellular acidification caused by NH4+ influx into the cell.  相似文献   

9.
Angiotensin II stimulation of vascular smooth muscle cells results in initial, rapid diacylglycerol (DG) formation from the polyphosphoinositides accompanied by intracellular acidification, as well as a more sustained DG accumulation which is accompanied by a prolonged intracellular alkalinization. To determine whether intracellular pH (pHi) modulates DG accumulation, NH4Cl and potassium acetate were used to alter pHi and DG formation was measured. NH4Cl (10 mM) increased pHi from 7.15 +/- 0.05 to 7.34 +/- 0.02 pH units and markedly enhanced the sustained (5 min), but not the initial (15 s), phase of DG formation in response to 100 nM angiotensin II (65 +/- 13% increase). Conversely, intracellular acidification with Na+-free buffer and potassium acetate (20 mM) decreased pHi to 6.93 +/- 0.08 and reduced subsequent angiotensin II-induced sustained DG formation by 82 +/- 9%. In intact cells, inhibition of angiotensin II-stimulated alkalinization by incubation in Na+-free buffer or by addition of the Na+/H+ exchange inhibitor dimethylamiloride (10 microM) decreased the ability of the cell to sustain DG formation, suggesting that active Na+/H+ exchange is necessary for continued DG formation. Thus, it seems that sustained, angiotensin II-induced diacylglycerol accumulation is regulated by intracellular alkalinization secondary to Na+/H+ exchange in cultured vascular smooth muscle cells.  相似文献   

10.
The regulation of intracellular pH (pHi) in rat sublingual mucous acini was monitored using dual-wavelength microfluorometry of the pH-sensitive dye BCECF (2',7'-biscarboxyethyl-5(6)-carboxyfluorescein). Acini attached to coverslips and continuously superfused with HCO3(-)-containing medium (25 mM NaHCO3/5% CO2; pH 7.4) have a steady-state pHi of 7.25 +/- 0.02. Acid loading of acinar cells using the NH4+/NH3 prepulse technique resulted in a Na(+)-dependent, MIBA-inhibitable (5-(N-methyl-N-isobutyl) amiloride, Ki approximately 0.42 microM) pHi recovery, the kinetics of which were not influenced by the absence of extracellular Cl-. The rate and magnitude of the pHi recovery were dependent on the extracellular Na+ concentration, indicating that Na+/H+ exchange plays a critical role in maintaining pHi above the pH predicted for electrochemical equilibrium. When the NH4+/NH3 concentration was varied, the rate of pHi recovery was enhanced as the extent of the intracellular acidification increased, demonstrating that the activity of the Na+/H+ exchanger is regulated by the concentration of intracellular protons. Switching BCECF-loaded acini to a Cl(-)-free medium did not significantly alter resting pHi, suggesting the absence of Cl-/HCO3- exchange activity. Muscarinic stimulation resulted in a rapid and sustained cytosolic acidification (t 1/2 < 30 sec; 0.16 +/- 0.02 pH unit), the magnitude of which was amplified greater than two-fold in the presence of MIBA (0.37 +/- 0.05 pH unit) or in the absence of extracellular Na+ (0.34 +/- 0.03 pH unit). The agonist-induced intracellular acidification was blunted in HCO3(-)-free media and was inhibited by DPC (diphenylamine-2-carboxylate), an anion channel blocker. In contrast, the acidification was not influenced by removal of extracellular Cl-. The Ca2+ ionophore, ionomycin, mimicked the effects of stimulation, whereas preloading acini with BAPTA (bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid) to chelate intracellular Ca2+ blocked the agonist-induced cytoplasmic acidification. The above results indicate that during muscarinic stimulation an intracellular acidification occurs which: (i) is partially buffered by increased Na+/H+ exchange activity; (ii) is most likely mediated by HCO3- efflux via an anion channel; and (iii) requires an increase in cytosolic free [Ca2+].  相似文献   

11.
We have examined the effects of hydrocortisone on growth and Na+/H+ exchange in cultured rat aortic vascular smooth muscle cells (VSMC). Hydrocortisone (2 microM) treatment of growth-arrested VSMC significantly decreased VSMC growth in response to 10% calf serum assayed by 3H-thymidine incorporation and cell number at confluence. This effect was associated with the appearance of an altered cell phenotype characterized by large, flat VSMC that did not form typical "hillocks." Na+/H+ exchange was also altered in hydrocortisone-treated cells assayed by dimethylamiloride-sensitive 22Na+ influx into acid-loaded cells or by intracellular pH (pHi) change using the fluorescent dye BCECF. Resting pHi was 7.25 +/- 0.04 and 7.15 +/- 0.05 in control and hydrocortisone-treated cells, respectively (0.1 less than P less than 0.05). Following intracellular acidification in the absence of external Na+, pHi recovery upon addition of Na+ was increased 89% in hydrocortisone-treated cells relative to control. This was due to an increase in the Vmax for the Na+/H+ exchanger from 17.5 +/- 2.4 to 25.9 +/- 2.0 nmol Na+/mg protein x min (P less than 0.01) without a significant change in Km. Treatment of VSMC with actinomycin D (1 microgram/ml) or cycloheximide (10 microM) completely inhibited the hydrocortisone-mediated increase in Na+/H+ exchange, indicating a requirement for both RNA and protein synthesis. Because hydrocortisone altered the Vmax for Na+/H+ exchange, in contrast to agonists such as serum or angiotensin II which alter the Km for intracellular H+ or extracellular Na+, respectively, we studied the effect of hydrocortisone on activation of Na+/H+ exchange by these agonists. In cells maintained at physiological pHi (7.2), the initial rate (2 min) of angiotensin II-stimulated alkalinization was increased 66 +/- 39% in hydrocortisone-treated compared with control cells. Hydrocortisone caused no change in angiotensin II-stimulated phospholipase C activity assayed by measurement of changes in intracellular Ca2+ or diacylglycerol formation. However, angiotensin II and serum stimulated only small increases in Na+/H+ exchange in acid-loaded (pHi = 6.8) hydrocortisone-treated cells. These findings suggest that hydrocortisone-mediated increases in VSMC Na+/H+ exchange occur in association with a nonproliferating phenotype that has altered regulation of Na+/H+ exchange activation. We propose that hydrocortisone-mediated growth inhibition may be a useful model for studying the role of Na+/H+ exchange in cell growth responsiveness.  相似文献   

12.
The regulation of intracellular pH (pHi) in a renal epithelial cell line, LLC-PK1/Cl4, during re-acidification from an alkaline load was studied by 31P-NMR. Intracellular alkalinization was induced by 10 mM ammonium glucuronate or by preloading with and subsequent removal of 20% CO2; the rate of re-acidification was found to be 0.047 pH units/min and 0.053 pH units/min, respectively. This rate of re-acidification was inhibited by 83% if Cl- was removed from the extracellular medium. A similar inhibition was found in the presence of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) (76% inhibition) and 1 mM bumetanide (81% inhibition). No change in recovery was found after removing sodium from the extracellular medium, indicating that LLC-PK1/Cl4 cells recover from an intracellular alkaline load by a Cl-/HCO3- exchanger, which is SITS- and bumetanide-sensitive and has no requirement for sodium. In addition, the steady-state pHi in Cl4 cells was monitored by 31P-NMR. Removal of Cl- from the extracellular medium introduced an increase in pHi by 0.33 pH units, whereas 1 mM SITS and 1 mM bumetanide caused an increase in pHi by 0.14 or 0.13 pH units. In the presence of 1 mM amiloride, an inhibitor of the Na+/H+ exchanger, the steady-state pHi did not change significantly. These results indicate that at pHo 7.4 the steady-state intracellular pH of LLC-PK1/Cl4 cells strongly depends on the activity of the Cl-/HCO3- exchanger. Under the same conditions the activity of the Na+/H+ exchanger seems to be negligible.  相似文献   

13.
The regulation of intracellular pH (pHi) was monitored in a virus-transformed cell clone derived from bovine ciliary body exhibiting characteristics of pigmented ciliary epithelium. Data were obtained from confluent monolayers grown on plastic coverslips in nominally bicarbonate-free media using the pH-sensitive absorbance of 5- (and 6-) carboxy-4',5'-dimethylfluorescein. Under resting conditions, pHi averaged 6.98 +/- 0.01 (SEM; n = 57). When cells were acid loaded by briefly exposing them to Ringer containing NH4+ and then withdrawing the NH4+, pHi spontaneously regained its initial value. In the presence of 1 mM amiloride or in the absence of Na+, this process was blocked, indicating the involvement of an Na+/H+ exchanger in the regulation of pHi after an acid load. Removing Na+ during resting conditions decreased cytoplasmatic pH. This acidification could be slowed by amiloride, which is evidence for reversal of the Na+/H+ countertransport exchanging intracellular Na+ for extracellular protons. Application of 1 mM amiloride during steady state led to a slow acidification. Thus the Na+/H+ exchanger is operative during resting conditions extruding protons, derived from cellular metabolism, or from downhill leakage into the cell. Addition of Na+ to Na+ -depleted cells led to an alkalinization, which was sensitive to amiloride, with an IC50 of about 20 microM. This alkalinization was attributed to the Na+/H+ exchanger and exhibited saturation kinetics with increasing Na+ concentrations, with an apparent KM of 29.6 mM Na+. It is concluded that Na+/H+ exchange regulates pHi during steady state and after an acid load.  相似文献   

14.
In order to provide additional information on the biochemical events that interact to cause Schwann cells to proliferate, we have monitored the intracellular pH of Schwann cells that have been stimulated to divide with myelin-enriched fractions (MEF) or axolemma-enriched fractions (AEF). The intracellular pH of Schwann cells was monitored using 2',7'-bis(carboxymethyl)-5(6)-carboxyfluorescein (BCECF), which displays an increase in fluorescence upon alkalinization. Both AEF and MEF caused dose-dependent increases in the intracellular fluorescence of the Schwann cell cultures. At their maximum doses, AEF and MEF stimulation resulted in a 260 and 300% increase in intracellular fluorescence, respectively. The increase in intracellular fluorescence was abolished when cells were stimulated in Na+-free media, suggesting a role for the Na+/H+ exchanger. Mitotic stimulation required integrity of the Na+/H+ exchanger, as inhibition of the Na+/H+ exchanger for periods up to 1 h after addition of mitogen caused a significant inhibition of subsequent mitosis. Phorbol esters, which can potentiate AEF- and MEF-induced Schwann cell proliferation, increased intracellular fluorescence fivefold, an effect which was also dependent upon the presence of Na+ in the culture media. The specificity of the increase in intracellular pH for AEF and MEF was tested by incubating Schwann cells with liver microsomes and a biologically inactive phorbol alcohol, neither of which is significantly mitogenic for Schwann cells. Neither liver microsomes nor phorbol alcohol had a significant effect on intracellular pH. The implications of the increase in intracellular pH in Schwann cells with respect to inositol phospholipid metabolism, protein kinase C activation, and cellular proliferation are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Fluid secretion and intracellular pH were measured in isolated mosquito Malpighian tubules to determine the presence of Na(+)/H(+) exchange. Rates of fluid secretion by individual Malpighian tubules in vitro were inhibited by 78% of control in the presence of 100 microM 5-(N-ethyl-n-isopropyl)-amiloride (EIPA), a specific inhibitor of Na(+)/H(+) exchange. Steady-state intracellular pH was measured microfluorometrically by using 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in individual Malpighian tubules. Bathing the Malpighian tubules in 0 mM extracellular Na(+) or in the presence of 100 microM EIPA reduced the steady-state intracellular pH by 0.5 pH units. Stimulation of the Na(+)/H(+) exchanger by using the NH(4)Cl pulse technique resulted in a rate of recovery from the NH(4)Cl-induced acute acid load of 8.7 +/- 1.0 x 10(-3) pH/s. The rates of recovery of intracellular pH after the acute acid load in the absence of extracellular Na(+) or in the presence of 100 microM EIPA were 0.7 +/- 0.6 and -0.3 +/- 0.3 x 10(-3) pH/s, respectively. These results indicate that mosquito Malpighian tubules possess a Na(+)/H(+) exchanger.  相似文献   

17.
Fluorescence and electrophysiological methods were used to determine the effects of intracellular pH (pHi) on cellular NH4+/K+ transport pathways in the renal medullary thick ascending limb of Henle (MTAL) from CD1 mice. Studies were performed in suspensions of MTAL tubules (S-MTAL) and in isolated, perfused MTAL segments (IP-MTAL). Steady-state pHi measured using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) averaged 7.42 +/- 0.02 (mean +/- SE) in S-MTAL and 7.26 +/- 0.04 in IP-MTAL. The intrinsic cellular buffering power of MTAL cells was 29.7 +/- 2.4 mM/pHi unit at pHi values between 7.0 and 7.6, but below a pHi of 7.0 the intrinsic buffering power increased linearly to approximately 50 mM/pHi unit at pHi 6.5. In IP-MTAL, NH4+ entered cells across apical membranes via both Ba(2+)-sensitive pathway and furosemide-sensitive Na+:K+(NH4+):2Cl- cotransport mechanisms. The K0.5 and maximal rate for combined apical entry were 0.5 mM and 83.3 mM/min, respectively. The apical Ba(2+)-sensitive cell conductance in IP-MTAL (Gc), which reflects the apical K+ conductance, was sensitive to pHi over a pHi range of 6.0-7.4 with an apparent K0.5 at pHi approximately 6.7. The rate of cellular NH4+ influx in IP-MTAL due to the apical Ba(2+)-sensitive NH4+ transport pathway was sensitive to reduction in cytosolic pH whether pHi was changed by acidifying the basolateral medium or by inhibition of the apical Na+:H+ exchanger with amiloride at a constant pHo of 7.4. The pHi sensitivities of Gc and apical, Ba(2+)-sensitive NH4+ influx in IP-MTAL were virtually identical. The pHi sensitivity of the Ba(2+)-sensitive NH4+ influx in S-MTAL when exposed to (apical+basolateral) NH4Cl was greater than that observed in IP-MTAL where NH4Cl was added only to apical membranes, suggesting an additional effect of intracellular NH4+/NH3 on NH4+ influx. NH4+ entry via apical Na+:K+ (NH4+):2Cl- cotransport in IP-MTAL was somewhat more sensitive to reductions in pHi than the Ba(2+)-sensitive NH4+ influx pathway; NH4+ entry decreased by 52.9 +/- 13.4% on reducing pHi from 7.31 +/- 0.17 to 6.82 +/- 0.14. These results suggest that pHi may provide a negative feedback signal for regulating the rate of apical NH4+ entry, and hence transcellular NH4+ transport, in the MTAL. A model incorporating these results is proposed which illustrates the role of both pHi and basolateral/intracellular NH4+/NH3 in regulating the rate of transcellular N H4+ transport in the MTAL.  相似文献   

18.
Modulation of hepatic cholate transport by transmembrane pH-gradients and during interferences with the homeostatic regulation of intracellular pH and K+ was studied in the isolated perfused rat liver. Within the concentration range studied uptake into the liver was saturable and appeared to be associated with release of OH- and uptake of K+. Perfusate acidification ineffectually stimulated uptake. Application of NH4Cl caused intracellular alkalinization, release of K+ and stimulation of cholate uptake, withdrawal of NH4Cl resulted in intracellular acidification, regain of K+ and inhibition of cholate uptake. Inhibition of Na+/H(+)-exchange with amiloride reduced basal release of acid equivalents into the perfusate, initiated K(+)-release, and inhibited both, control cholate uptake and its recovery following intracellular acidification. K(+)-free perfusion caused K(+)-release and inhibited cholate uptake. K(+)-readmission resulted in brisk K(+)-uptake and recovery of cholate transport. Both effects were inhibited by amiloride. Interference with cholate transport through modulation of pH homeostasis by diisothiocyanostilbenedisulfonate (DIDS) could not be demonstrated because DIDS affected bile acid transport directly. Biliary bile acid secretion was stimulated by intracellular alkalinization and by activation of K(+)-transport. Uncoupling of the mutual interference between pH-dependent cholate uptake and K(+)-transport by amiloride indicates tertiary active transport of cholate. In this, Na+/K(+)-ATPase provides the transmembrane Na(+)-gradient to sustain Na+/H(+)-exchange which maintains the transmembrane pH-gradient and thus supports cholate uptake. Effects of canalicular bile acid secretion are consistent with a saturable, electrogenic transport.  相似文献   

19.
The amiloride-sensitive Na+/H+ antiport in 3T3 fibroblasts   总被引:14,自引:0,他引:14  
BALB/c 3T3 fibroblasts have an amiloride-sensitive Na+ uptake mechanism which is hardly detectable under normal physiological conditions. The activity of this Na+ transport system can be increased to a large extent by treatments that decrease the internal pH such as loss of intracellular NH4+ as NH3 or incubation with nigericin in the presence of a low external K+ concentration. These treatments have made possible an analysis of the interaction of the Na+/H+ antiport with amiloride and of the external pH dependence of the system. The addition of fetal bovine serum to quiescent 3T3 cells stimulates the initial rate of the amiloride-sensitive 22Na+ uptake by only 50%. However, after treatment of the cells with ammonia or nigericin, serum produces a 40-fold stimulation of the rate of the amiloride-sensitive 22Na+ uptake. Control experiments show that serum does not stimulate the activity of the Na+/H+ antiport by an indirect mechanism involving a depolarization of the membrane or a modification of the internal Ca2+ concentration. It is suggested that some serum component directly interacts with the Na+/H+ exchanger to modify its catalytic properties.  相似文献   

20.
Na+/H+ exchange in acid-loaded isolated hepatocytes was measured using the intracellular pH indicator biscarboxyethyl-carboxyfluorescein (BCECF) to follow intracellular pH (pHi). The rate of amiloride-sensitive Na(+)-dependent recovery from cytoplasmic-acid-loading was found to be increased in cells treated with epidermal growth factor (EGF), 8-(4-chlorophenylthio)adenosine 3',5'-monophosphate (ClPhScAMP) or phorbol 12-myristate 13-acetate (PMA). These three agents increased the rate of Na+/H+ exchange to similar extents and their effects were not additive. The stimulation was shown in all three cases to be due an alkaline shift of 0.1 in the set point pH of the Na+/H+ exchanger. Experiments measuring the uptake of 22Na+ into acid-loaded primary hepatocyte monolayer cultures confirmed these results. EGF, ClPhScAMP and PMA significantly increased the amiloride-inhibitable accumulation of 22Na+, thus providing further evidence that Na+/H+ exchange is stimulated by these effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号