首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stuttering is a common speech disorder with substantial genetic contributions. To better understand the genetic factors involved in stuttering, we performed a genome-wide linkage study in a newly-ascertained consanguineous stuttering family from Pakistan. A linkage scan in this family using parametric linkage analysis revealed significant linkage only on chromosome 3q13.2–3q13.33, with a maximum two-point LOD score of 4.23 under an autosomal recessive model of inheritance.  相似文献   

2.
Autosomal recessive hypotrichosis is a rare form of human genetic disorder characterized by sparse to absent hair on scalp and rest of the body of affected individuals. Over the past few years at least five autosomal recessive forms of hypotrichosis loci have been mapped on different human chromosomes. In the present study, we report localization of another novel autosomal recessive hypotrichosis locus on human chromosome 10q11.23–22.3 in a four generation consanguineous Pakistani family. All the four patients in the family showed typical features of hereditary hypotrichosis including sparse hair on the scalp and rest of the body. Human genome scan using highly polymorphic microsatellite markers mapped the disease locus to a large region on chromosome 10. This novel locus maps to 29.81 cM (28.5 Mb) region, flanked by markers D10S538 and D10S2327 on chromosome 10q11.23–22.3. A maximum multipoint LOD score of 3.26 was obtained with several markers in this region. DNA sequence analysis of exons and splice-junction sites of four putative candidate genes (P4HA1, ZNF365, ZMYND17, MYST4), located in the linkage interval, were sequenced but were negative for functional sequence variants.  相似文献   

3.
Juvenile myoclonic epilepsy is a clinically well-defined, age-related common idiopathic generalized epilepsy syndrome with substantial genetic basis to its etiology. We report identification of a novel epilepsy locus at chromosome 5q12–q14 in a family exhibiting autosomal dominant form of juvenile myoclonic epilepsy from south India. The highest two-point LOD score of 3.3344 was obtained for the microsatellite markers D5S641 and D5S459 at 5q14. Centromeric and telomeric chromosomal boundaries of the locus were defined by D5S624 and D5S428, respectively. The 5q12–q14 locus encompasses about 25 megabases of the genomic region and harbours several candidate genes. Further work involving a detailed mutational analysis of the locus, to isolate the gene responsible for the epilepsy disorder in the family, shall help enhance our understanding of molecular basis of epilepsy disorders.  相似文献   

4.
Allelic association methods are better suited than linkage analysis for mapping of susceptibility genes that confer modest increases in risk in complex diseases. In both family- and population-based association studies, it is very useful to have prior knowledge of all sequence variants and the degree of linkage disequilibrium in a candidate gene region. In this study, we scanned sequence variants in a 2.2-kb promoter sequence and all 13 exons (totalling 3.3 kb) of the matrix metalloproteinase-9 gene, which is associated with coronary heart disease and a candidate for other diseases involving connective tissue remodelling, such as cancer metastasis. The sequences had a total of ten variable sites, four in the promoter, five in the coding region (three of which alter the amino acid encoded) and one in the 3' untranslated sequence. Sequence inspection suggests that some of the variants will have a functional impact on either level of expression or enzymatic activity. Tight linkage disequilibrium was detected between variants across the entire length of the gene (approximately 9 kb), and frequencies of different haplotypes were determined. The data provide an essential tool for studies of the possible contribution of genetic variation at the matrix metalloproteinase-9 locus to genetically determined susceptibility to a number of important diseases. The results also provide experimental data on the extent of linkage disequilibrium in the general population, which is yet to be resolved.  相似文献   

5.
Postaxial Polydactyly (PAP) is characterized by fifth digit duplication in hands and/or feet. Two types of PAP including PAP-A, representing the development of well-formed extra digit, and PAP-B, representing the presence of rudimentary fifth digit, have been described. Both isolated and syndromic forms of PAP have been reported. Isolated forms of PAP usually segregate as an autosomal dominant trait and to date four loci have been identified. In the present study, we have described mapping of the first locus of autosomal recessive PAP type A on chromosome 13q13.3–13q21.2 in a consanguineous Pakistani family. Using polymorphic microsatellite markers, the disease locus was mapped to a 17.87-cM (21.13 Mb) region flanked by markers D13S1288 and D13S632, on chromosome 13q13.3–13q21.2. A maximum multipoint LOD score of 3.84 was obtained with several markers along the disease interval. DNA sequence analysis of exons and splice-junction sites of ten candidate genes (CHM-I, TSC22D1, FOXO1, DIAPH3, CCDC122, CKAP2, SUGT1, RANKL, LPAR6, C13ORF31) did not reveal potentially causal variants.  相似文献   

6.
Hereditary non-syndromic sensorineural hearing loss (NSSHL) is a genetically highly heterogeneous group of disorders. Autosomal dominant forms account for up to 20% of cases. To date, 39 loci have been identified by linkage analysis of affected families that segregate NSSHL forms in the autosomal dominant mode (DFNA). Investigation of a large Spanish pedigree with autosomal dominant inheritance of bilateral and progressive NSSHL of postlingual onset excluded linkage to known DFNA loci and, in a subsequent genome-wide scan, the disorder locus was mapped to 3q28-29. A maximum two-point LOD score of 4.36 at theta=0 was obtained for marker D3S1601. Haplotype analysis placed the novel locus, DFNA44, within a 3-cM genetic interval defined by markers D3S1314 and D3S2418. Heteroduplex analysis and DNA sequencing of coding regions and exon/intron boundaries of two genes (CLDN16 and FGF12) in this interval did not reveal disease-causing mutations.  相似文献   

7.
Chromosome 15 is frequently involved in the formation of structural rearrangements. We report the molecular characterisation of 16 independent interstitial duplications, including those of one individual who carried a duplication on both of her chromosomes 15, and three interstitial triplications of the Prader-Willi/Angelman syndrome critical region (PWACR). In all probands except one, the rearrangement was maternal in origin. In one family, the duplication was paternal in origin, yet appeared to segregate in a sibship of three with an abnormal phenotype that included developmental delay and a behavioural disorder. Ten duplications were familial, five de novo and one unknown. All 16 duplications, including two not visible by routine G-banding, were of an almost uniform size and shared the common deletion breakpoints of Prader-Willi syndrome and Angelman syndrome. Like deletions, the formation of duplications can occur in both male and female meiosis and involve both inter- and intrachromosomal events. This implies that at least some deletions and duplications are the reciprocal products of each other. We observed no instances of meiotic instability in the transmission of a duplication, although recombination within the PWACR occurred in two members of the same family between the normal and the duplicated chromosome 15 homologues. All three triplications arose de novo and included alleles from both maternal chromosomes 15. Triplication breakpoints were more variable and extended distally beyond the PWACR. The molecular characteristics of duplications and triplications suggest that they are formed by different mechanisms.  相似文献   

8.
Xing Q  Chen X  Wang M  Bai W  Peng X  Gao R  Wu S  Qian X  Qin W  Gao J  Feng G  He L 《Human genetics》2005,117(2-3):154-159
Generalized lentiginosis (GL) is characterized by widespread lentigines without associated noncutaneous abnormalities. In this study we performed a genome-wide linkage search in a Chinese family with GL and localized the familial GL locus to chromosome 4q21.1–q22.3, with a maximum two-point LOD score of 3.01 for D4S395 and D4S423 at a recombination fraction of 0. Multipoint analysis (maximum LOD score of 5.08 between markers D4S395 and D4S1563) and haplotype construction showed strong evidence of linkage in a region of 20 Mb flanked by markers D4S2915 and D4S1560 on chromosome 4q21.1–q22.3. This is the first report of linkage for GL, and it will provide further insight into the controversy of whether GL is an entity distinct from LEOPARD syndrome.Qinghe Xing and Xiangdong Chen contributed equally to this work  相似文献   

9.
Dai XH  Chen WW  Wang X  Zhu QH  Li C  Li L  Liu MG  Wang QK  Liu JY 《Human genetics》2008,124(4):423-429
Febrile seizures (FS) are common in children, and the incidence is 2–5% before the age of 5 years. A four-generation Chinese family with autosomal dominant febrile seizure and epilepsy was studied by genome-wide linkage analysis. Significant linkage was identified with markers on chromosome 3q26.2–26.33 with a maximum pairwise LOD score of >3.00. Fine mapping defined the new genetic locus within a 10.7-Mb region between markers D3S3656 and D3S1232. A maximum multipoint LOD score of 5.27 was detected at marker D3S1565. A previously reported CLCN2 gene for epilepsy was excluded as the disease-causing gene in the family by mutational analysis of all exons and exon–intron boundaries of CLCN2 and by haplotype analysis. Mutation analysis of KCNMB2 and KCNMB3, which were two potassium-channel genes in this linkage region, did not reveal a disease causing mutation. Our results identified another novel locus on chromosome 3q26.2–26.33, and future studies of the candidate genes at the locus will identify a new gene for combined FS and idiopathic epilepsies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. X.-H. Dai, W.-W. Chen, and X. Wang contributed equally to this work.  相似文献   

10.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant, recurrent focal neuropathy characterized by episodes of painful brachial plexus neuropathy with muscle weakness and atrophy, as well as sensory disturbances. Single episodes are commonly preceded by unspecific infections or immunization, or are associated with parturition. Minor facial dysmorphic features are present in some pedigrees but do not clearly segregate with the disease. To confirm the recently described HNA locus on distal chromosome 17q, we performed a genetic linkage study in an extended Turkish pedigree. We were able to refine the HNA locus on chromosome 17q24–q25 in a 16-cM region. Received: 21 October 1996  相似文献   

11.
Summary The human progesterone receptor gene was mapped by in situ hybridization using two cDNA probes corresponding to the 5′ and 3′ part of the coding sequence. This gene was localized to 11q22-q23.  相似文献   

12.
John P  Ali G  Chishti MS  Naqvi SM  Leal SM  Ahmad W 《Human genetics》2006,118(5):665-667
Alopecia with mental retardation syndrome is a rare autosomal recessive disorder characterized clinically by total or partial alopecia and mental retardation. In an effort to understand the molecular bases of this form of alopecia syndrome, large Pakistani consanguineous kindred with multiple affected individuals has been ascertained from a remote region in Pakistan. Genome wide scan mapped the disease locus on chromosome 3q26.33–q27.3. A maximum two-point LOD score of 3.05 (θ=0.0) was obtained at marker D3S3583. Maximum multipoint LOD score exceeding 5.0, obtained with several markers, supported the linkage. Recombination events observed in affected individuals localized the disease locus between markers D3S1232 and D3S2436, spanning 11.49-cM region on chromosome 3q26.33–q27.3. Sequence analysis of a candidate gene ETS variant gene 5 from DNA samples of two affected individuals of the family revealed no mutation.  相似文献   

13.
14.
Distal hereditary motor neuropathies predominantly affect the motor neurons of the peripheral nervous system leading to chronic disability. Using whole genome sequencing (WGS) we have identified a novel structural variation (SV) within the distal hereditary motor neuropathy locus on chromosome 7q34–q36.2 (DHMN1). The SV involves the insertion of a 1.35 Mb DNA fragment into the DHMN1 disease locus. The source of the inserted sequence is 2.3 Mb distal to the disease locus at chromosome 7q36.3. The insertion involves the duplication of five genes (LOC389602, RNF32, LMBR1, NOM1, MNX1) and partial duplication of UBE3C. The genomic structure of genes within the DHMN1 locus are not disrupted by the insertion and no disease causing point mutations within the locus were identified. This suggests the novel SV is the most likely DNA mutation disrupting the DHMN1 locus. Due to the size and position of the DNA insertion, the gene(s) directly affected by the genomic re-arrangement remains elusive. Our finding represents a new genetic cause for hereditary motor neuropathies and highlights the growing importance of interrogating the non-coding genome for SV mutations in families which have been excluded for genome wide coding mutations.  相似文献   

15.
Summary Using a 166-nucleotide-long DNA synthetic probe corresponding to the v-kit sequence (1458-1623), we have mapped the human c-kit gene to chromosome 4 at the q11–q12 band by in situ hybridization on chromosomes from human lymphocyte preparations.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) in the KLK3 gene on chromosome 19q13.33 are associated with serum prostate-specific antigen (PSA) levels. Recent genome wide association studies of prostate cancer have yielded conflicting results for association of the same SNPs with prostate cancer risk. Since the KLK3 gene encodes the PSA protein that forms the basis for a widely used screening test for prostate cancer, it is critical to fully characterize genetic variation in this region and assess its relationship with the risk of prostate cancer. We have conducted a next-generation sequence analysis in 78 individuals of European ancestry to characterize common (minor allele frequency, MAF >1%) genetic variation in a 56 kb region on chromosome 19q13.33 centered on the KLK3 gene (chr19:56,019,829–56,076,043 bps). We identified 555 polymorphic loci in the process including 116 novel SNPs and 182 novel insertion/deletion polymorphisms (indels). Based on tagging analysis, 144 loci are necessary to tag the region at an r 2 threshold of 0.8 and MAF of 1% or higher, while 86 loci are required to tag the region at an r 2 threshold of 0.8 and MAF >5%. Our sequence data augments coverage by 35 and 78% as compared to variants in dbSNP and HapMap, respectively. We observed six non-synonymous amino acid or frame shift changes in the KLK3 gene and three changes in each of the neighboring genes, KLK15 and KLK2. Our study has generated a detailed map of common genetic variation in the genomic region surrounding the KLK3 gene, which should be useful for fine-mapping the association signal as well as determining the contribution of this locus to prostate cancer risk and/or regulation of PSA expression.  相似文献   

17.
Summary The human NK-2 receptor gene has been mapped to chromosome 10 using the polymerase chain reaction to amplify specifically the human NK-2 receptor sequence in hamster/human hybrid DNA and also in mouse/human monochromosome hybrids. The assignment to chromosome 10 was confirmed by in situ hybridisation to human metaphase chromosomes, giving a regional localisation of 10q11–21.  相似文献   

18.
We report a consanguineous Pakistani family with seven affected individuals showing a syndromic form of congenital microcephaly. Clinical features of affected individuals include congenital microcephaly with sharply slopping forehead, moderate to severe mental retardation, anonychia congenita, and digital malformations. By screening human genome with microsatellite markers, this autosomal recessive condition was mapped to a 25.2 cM interval between markers D18S1150 and D18S1100 on chromosome 18p11.22–q12.3. However, the region of continuous homozygosity between markers D18S1150 and D18S997 spanning 15.33 cM, probably define the most likely candidate region for this condition. This region encompasses a physical distance of 12.03 Mb. The highest two-point LOD score of 3.03 was obtained with a marker D18S1104 and multipoint score reached a maximum of 3.43 with several markers. Six candidate genes, CEP76, ESCO1, SEH1L, TUBB6, ZNF519, and PTPN2 were sequenced, and were found to be negative for functional sequence variants.  相似文献   

19.
CD28 is a cell surface molecule present on most peripheral T cells which has been implied in the amplification of the T-cell response in vitro. Using in situ hybridization on human prometaphase cells, we have found that the human CD28 gene maps to chromosome 2 at bands q33–q34, as shown previously for the CTLA-4 gene. CD28 and CTLA-4 are both members of the Ig superfamily, where they define a subgroup of membrane-bound single V domains. Their chromosomal proximity and their close structural relationship suggest that these two genes could be the result of the duplication of a common evolutionary precursor and may share some functional properties. Address correspondence and offprint requests to: M. Lafage-Pochitaloff.  相似文献   

20.
Keloids are benign dermal tumors that occur ~20 times more often in African versus Caucasian descent individuals. While most keloids occur sporadically, a genetic predisposition is supported by both familial aggregation of some keloids and the large differences in risk among populations. Yet, no well-established genetic risk factors for keloids have been identified. In this study, we conducted admixture mapping and whole-exome association using 478 African Americans (AAs) samples (122 cases, 356 controls) with exome genotyping data to identify regions where local ancestry associated with keloid risk. Logistic regression was used to evaluate associations under admixture peaks. A significant mapping peak was observed on chr15q21.2–22.3. This peak included NEDD4, a gene previously implicated in a keloid genome-wide association study (GWAS) of Japanese individuals later validated in a Chinese cohort. While we observed modest evidence for association with NEDD4, a more significant association was observed at (myosin 1E) MYO1E. A genome scan not including the 15q21-22 region also identified associations at MYO7A (rs35641839, odds ratio [OR] = 4.71, 95 % confidence interval [CI] 2.38–9.32, p = 8.34 × 10?6) at 11q13.5. The identification of SNPs in two myosin genes strongly associated with keloid formation suggests that an altered cytoskeleton contributes to the enhanced migratory and invasive properties of keloid fibroblasts. Our findings support the admixture mapping approach for the study of keloid risk, and indicate potentially common genetic elements on chr15q21.2–22.3 in causation of keloids in AAs, Japanese, and Chinese populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号