首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An immunofluorescent staining procedure has been developed to identify, with flow cytometry, replicating cells of Saccharomyces cerevisiae after incorporation of bromodeoxyuridine (BrdUrd) into the DNA. Incorporation of BrdUrd is made possible by using yeast strains with a cloned thymidine kinase gene from the herpes simplex virus. An exposure time of 4 min to BrdUrd results in detectable labeling of the DNA. The BrdUrd/DNA double staining procedure has been optimized and the flow cytometry measurements yield histograms comparable to data typically obtained for mammalian cells. On the basis of the accurate assessment of cell fractions in individual cell cycle phases of the asynchronously growing cell population, the average duration of the cell cycle phases has been evaluated. For a population doubling time of 100 min it was found that cells spend in average 41 min in the replicating phase and 24 min in the G2+M cell cycle period. Assuming that mother cells immediately reenter the S phase after cell division, daughter cells spend 65 min in the G1 cell cycle phase. Together with the single cell fluorescence parameters, the forward-angle light scattering intensity (FALS) has been determined as an indicator of cell size. Comparing different temporal positions within the cell cycle, the determined FALS distributions show the lowest variability at the beginning of the S phase. The developed procedure in combination with multiparameter flow cytometry should be useful for studying the kinetics and regulation of the budding yeast cell cycle.  相似文献   

2.
BACKGROUND:The detection of DNA-incorporated bromodeoxyuridine (BrdUrd) in mammalian cells is a well-known and important technique to study cell cycle. The use of TO-PRO-3 for detection of BrdUrd substitution of DNA by dual-laser flow cytometry has been investigated. METHODS:Fluorescence enhancement of TO-PRO-3 in BrdUrd-labeled cells is registered in combination with the fluorescence emission of the intercalating dye propidium iodide (PI) as a total DNA stain to give bivariate DNA/BrdUrd histograms. By the low concentration of only 0.3 mircoM TO-PRO-3, BrdUrd detection is optimized, and undisturbed total DNA content by PI can be detected as well. TO-PRO-3 is excited by a red HeNe laser and PI by an argon ion laser. RESULTS:In order to understand the binding of TO-PRO-3, energy transfer from PI to TO-PRO-3 has been measured as well as the influence of an external DNA binding dye such as Hoechst 33258 with Adenine-Thymine (AT) binding specificity. Cell cycle studies of human SCL-2 keratinocytes and mouse 3T3 cells prove the method to be as generally applicable as the classical BrdUrd/Hoechst quenching technique, but without need for expensive ultraviolet laser excitation. No BrdUrd sensitivity could be found for the similar dyes TO-PRO-1 and YO-PRO-3, whereas TO-PRO-5 and YOYO-3 showed only very little sensitivity to BrdUrd labeling as compared with TO-PRO-3. CONCLUSIONS:Cell cycle studies of mammalian cells can be done by dual-laser flow cytometry without the need for ultraviolet lasers by using the BrdUrd-dependent fluorescence enhancement of TO-PRO-3. Total DNA content can be measured simultaneously using PI.  相似文献   

3.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

4.
The effect of tulipin, a protein from plant origin recently purified, on cell cycle progression has been analyzed in the sensitive EUE cells by BrdUrd incorporation. The cytofluorimetric results demonstrate that tulipin specifically interacts with the S phase, with a dose-dependent decrease of the total S phase cells and an increase of the G1/G2 cells after 4 h of treatment in the synchronized EUE cells, whereas in the asynchronous population it mainly causes a dose-dependent decrease in the incorporation of BrdUrd per cell.  相似文献   

5.
Summary The effect of tulipin, a protein from plant origin recently purified, on cell cycle progression has been analyzed in the sensitive EUE cells by BrdUrd incorporation. The cytofluorimetric results demonstrate that tulipin specifically interacts with the S phase, with a dose-dependent decrease of the total S phase cells and an increase of the G1/G2 cells after 4 h of treatment in the synchronized EUE cells, whereas in the asynchronous population it mainly causes a dose-dependent decrease in the incorporation of BrdUrd per cell.  相似文献   

6.
This report describes a method by which mitotic cells were isolated from nonsynchronized Cloudman melanoma cells that had been pulse labeled with 5-bromo-2'-deoxyuridine (BrdUrd) and double-stained with a fluoresceinated monoclonal antibody to BrdUrd and with propidium iodide (PI). In initial experiments, melanoma cells were first pulse labeled with BrdUrd, treated with prostaglandin E1 (PGE1 10 micrograms/m1) or vehicle (0.1% ethanol) for up to 24 hours, then stained with anti-BrdUrd and PI. PGE1-treated cells monitored at 3-hour intervals were observed to migrate from S phase to G2 phase, then, enigmatically, back into the late S phase region of the distribution. In other experiments, cells treated with PGE1 were pulse labeled with BrdUrd at the end of the treatment period and harvested. In these experiments, there was a small, discrete subpopulation of cells within the late S phase region of the DNA distribution that was negative for anti-BrdUrd. This subpopulation of cells was sorted and examined by light microscopy. We observed that 95% of these BrdUrd-negative "S phase" cells were mitotic cells. Since mitotic cells and G2 cells have equivalent amounts of DNA, the reduced red fluorescence exhibited by these cells may be due to a greater sensitivity to denaturation, which has been described for DNA of mitotic cells, and would account for the phenomenon of cells appearing to move "backwards" in the cell cycle. This report indicates that although the BrdUrd/PI method can further define the cell cycle into four compartments, it can also lead to over-estimation of S phase cells in kinetic studies because of contaminating mitotic cells.  相似文献   

7.
The in vitro DNA synthesis labelling index was assessed immunohistochemically in 24 freshly obtained specimens of head and neck cancer using bromodeoxyuridine (BrdUrd) as the DNA precursor to determine the influence of BrdUrd concentration on labelling index (LI). Initially, tumour fragments were incubated in varying concentrations of BrdUrd from 2 to 100 microM for 2 h, and BrdUrd was detected with an anti-BrdUrd monoclonal antibody using immunoperoxidase labelling. There was a dose-response gradient with mean LI varying from 1.6% at 2 microM BrdUrd to 8.8% at 100 microM. The concentration-response gradient best fit a quadratic model when LI was plotted against log BrdUrd concentration (r = 0.65, P less than 0.0001). Eleven additional tumours were then studied to determine whether LI increased for BrdUrd concentrations above 100 microM. The mean LI at 125 microM and at 150 microM in these 11 tumours did not differ from the value at 100 microM, suggesting a plateau at this level. The gradient effect accounted for 17% of the variance in LI, while 60% of the variance was explained by between tumour differences. Within individual tumours, three response patterns were observed: (i) LI rose at a constant rate to the highest concentration tested (n = 8), (ii) the LI plateaued or declined at high BrdUrd concentrations (n = 6); and (iii) there was a biphasic slope slope in which the rate of rise in the LI increased at the higher BrdUrd concentrations (n = 2). The data show that BrdUrd concentration is an important variable in the immunohistochemical assessment of the in vitro LI in head and neck cancer.  相似文献   

8.
The existence of a high frequency of spontaneous sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) has thus far been supported by data on a small number of BS cell lines. To examine the cause of baseline SCEs more broadly, the frequencies of SCEs, as well as chromosomal aberrations (CAs) in 4 additional BS fibroblast strains were compared, under different assay and cell culture conditions, with those of normal cells in the range of approximately 0.9-90% 5-bromodeoxyuridine (BrdUrd) substitution into template DNA. SCEs at low levels of BrdUrd substitution were detected by an extremely sensitive immunofluorescent technique. From approximately 0.9% to 4.5% BrdUrd substitution, the SCE frequency in BS cells remained constant, at a level (40/cell) 8 times higher than that of normal cells. As BrdUrd substitution increased further, the SCE frequency in BS cells increased almost linearly, reaching 70-100 per cell at approximately 90% substitution, while the SCE increment in control fibroblasts was less than 5 per cell. Analysis of SCEs in 3 successive replication cycles similarly revealed that the SCE increment in BS cells depended on BrdUrd only at a high BrdUrd substitution level. In contrast to data on SCEs, CA induction by incorporated BrdUrd in BS cells was only slightly higher than that in normal cells. Thus, BS cells are extremely sensitive to BrdUrd for SCE induction, but much less so for CA induction.  相似文献   

9.
Abstract. Different sets of cell kinetic data obtained over many years from hairless mouse epidermis have been simulated by a mathematical model including circadian variations. Simulating several independent sets of data with the same mathematical model strengthens the validity of the results obtained. The data simulated in this investigation were all obtained with the experimental system in a state of natural synchrony. The data include cell cycle phase distributions measured by DNA flow cytometry of isolated epidermal basal cells, fractions of tritiated thymidine ([3H]TdR) labelled cells within the cell cycle phases measured by cell sorting at intervals after [3H]TdR pulse labelling, bivariate bromodeoxyuridine (BrdUrd)/DNA data from epidermal basal cells isolated at intervals after pulse labelling with BrdUrd, mitotic rate and per cent labelled mitosis (PLM) data from histologic sections. The following main new findings were made from the simulations: the second PLM peak observed at about 35 h after pulse labelling is hardly influenced by circadian variations; the peak is mainly determined by persisting synchrony of a rapidly cycling population with a G1-duration (TG1) of 20 h to 30 h; and there is a highly significant population of slowly cycling G1-cells (G). However, no significant circadian variations were found in the number of these cells.  相似文献   

10.
The incorporation of bromodeoxyuridine (BrdUrd) into newly synthesized DNA has been analysed during hepatocellular regeneration induced by partial hepatectomy in young rats. The kinetic state of the liver has been studied by flow cytometric analysis of the incorporated BrdUrd, while the fine localization of DNA replication sites through the cell cycle has been investigated at the ultrastructural level by the immunogold technique. Eighteen hours after partial hepatectomy flow cytometry revealed an early S phase distribution which corresponded to a specific staining of the interchromatin domains of the hepatocyte nucleus. Thirty-four hours after hepatectomy, on the other hand, when most cells were in late S, a specific staining of heterochromatin domains was observed. The effect of the BrdUrd technique on nuclear aggregation has also been analysed and discussed. The results demonstrate that specific patterns of DNA replication can be recognized during the cell cycle and that flow cytometry and electron microscopy appear to be complementary in the kinetic study of liver regeneration.  相似文献   

11.
M Nüsse  S M Afzal  B Carr  K Kavanau 《Cytometry》1985,6(6):611-619
Cell cycle kinetics after X-irradiation were studied in a solid rat rhabdomyosarcoma using a monoclonal antibody to bromodeoxyuridine (BrdUrd) in cells in which the DNA was labeled by BrdUrd. It could be shown that this tumor was composed of about 80% diploid host cells, and only 20% of the cells in the dissociated tumor were actually tetraploid tumor cells. When rats were injected intraperitoneally with BrdUrd to label S-phase cells in the tumor, only a fraction of both types of cells became labeled with BrdUrd during S-phase, even 24 h after injection. The diploid BrdUrd-labeled cells progressed rapidly into cycle; 4 h after injection of BrdUrd, labeled diploid G1-phase cells could be observed. Only 25% of the tetraploid S-phase cells could be labeled by a single injection of BrdUrd (160 mg/kg body weight). These labeled tetraploid cells progressed through the cell cycle with similar velocities as did labeled diploid cells. Using a "Mini Osmotic Pump" containing bromodeoxycytidine (BrdCyd) at high concentration (0.3 mol/L) that released BrdCyd continuously into the organism where it was converted to BrdUrd, it could be shown that after 2 days about 60% of cells in S-phase and 70% of cells in G2-phase were labeled. The fraction of labeled G2-phase cells in irradiated tumors (D = 10 and 20 Gy) was enhanced between 10 and 50 h after irradiation due to a radiation-induced G2 block in cycling tetraploid tumor cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A commercially available bromodeoxyuridine (BrdUrd) antibody was used to demonstrate sister chromatid differentiation (SCD) and to evaluate sister chromatid exchanges (SCEs) in V79 Chinese hamster cells. V79 cells were cultivated for one cell cycle in the presence of BrdUrd, followed by a second cell cycle in the absence of BrdUrd. Chromosome preparations were stained by a common immunologic staining technique. The staining pattern observed is similar to that after FPG (fluorescent plus Giemsa) staining, though with reverse staining specificity. The sensitivity of BrdUrd detection is enhanced by a factor of 20 compared to the FPG technique and thus allows the evaluation of SCEs at very low BrdUrd concentrations. The application of the antibody technique gives information about the origin and localization of SCEs and produces further evidence for the spontaneous occurrence of SCEs.  相似文献   

13.
Although sister-chromatid exchange (SCE) analysis is recognized as an indicator of exposure to DNA-damaging agents, the results of these analyses have been confounded by the use of bromodeoxyuridine (BrdUrd) to differentially label the sister chromatids. Not only does BrdUrd itself induce SCE, it also modulates the frequency of SCE induced by certain DNA-damaging agents. In order to examine this effect of BrdUrd on SCE frequency, an indirect method which lends itself to measurements both with and without BrdUrd was employed. Human teratocarcinoma-derived (P3) cells were exposed to ethyl methanesulfonate (EMS) and cultured with increasing concentrations of BrdUrd for lengths of time corresponding to one, two, and three generations of cell growth. At each time point, the distribution of nuclei among the phases of the cell-cycle and cell growth were evaluated for each concentration and chemical. A statistical model was employed which tested both for the main effects of chemicals and culture times and for interactions between these factors. Both EMS and BrdUrd significantly affected the percentages of nuclei within the cell-cycle. Exposure to EMS resulted in decreases in the percentages of nuclei in G0 + G1 and increases in the G2 + M compartment. Exposure to BrdUrd affected the size of the G0 + G1 compartment as well as the percentage of S-phase nuclei. Cell growth was reduced as a consequence of increasing EMS concentration and as a function of BrdUrd concentration; the effects of these chemicals were more readily apparent at the later time points. Most importantly, for both the cell-cycle kinetics data and the cell growth data, no evidence of an interaction between the effects of EMS and the effects of BrdUrd was detected statistically. These results may be interpreted to mean that while both EMS and BrdUrd affect the induction of SCE, under the conditions of this experiment, the effects are additive rather than interactive.Abbreviations: EMS, ethyl methanesulfonate - BrdUrd, bromodeoxyuridine - BrdUTP, bromodeoxyuridine triphosphate - dCTP, deoxycytidine triphosphate - SCE, sister-chromatid exchange - P3, human teratocarcinoma derived - HBSS, Hank's Balanced Salt Solution - HOUR, culture time - REP, replicate  相似文献   

14.
There are conflicting reports on the effect of exogenous thymidine (dThd) on the frequency of sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells. Thymidine has been reported either to increase or to have no effect on SCE frequency under similar experimental conditions. To resolve this controversy, we have carried out a series of experiments to examine the effect of dThd on CHO cells cultured with 5-bromodeoxyuridine (BrdUrd). In addition, we have examined the effect of dThd on CHO cells cultured with 5-chlorodeoxyuridine (CldUrd), a much more potent inducer of SCEs than BrdUrd. The addition of 100 microM dThd to the culture medium caused a consistent decrease in the yield of SCEs in cells grown in BrdUrd for two cell cycles. The decrease was even greater when cells were grown in dThd and CldUrd. Analysis of twin and single SCEs indicated that dThd must be present during the first cell cycle to reduce the frequency of SCEs. Because excess dThd is thought to have an effect when DNA replicates on a template substituted with a halogenated nucleoside, dThd at concentrations from 100 microM to 9 mM was added to cultures for the second cell cycle after a first cell cycle in BrdUrd. In this experiment, the presence of dThd increased SCE frequency in a dose-dependent manner. The results suggest that if dThd competes with halogenated nucleosides and thus decreases their incorporation into DNA, SCEs are suppressed in the subsequent cell cycle, whereas if excess dThd creates a dNTP pool imbalance, SCEs can be increased.  相似文献   

15.
The effect of 10(-5) M bromodeoxyuridine (BrdUrd) substitution in C3H 10T1/2 cells was evaluated. Cellular toxicity increased rapidly for BrdUrd exposure times that were longer than the population doubling time. Radiosensitization by BrdUrd exposure was almost complete after one cell doubling time and was characterized by a decrease in D0 and the survival curve shoulder. Exposure to BrdUrd for one cell doubling time produced only very low transformation levels, but for prolonged BrdUrd exposure times, the transformation frequency per viable cell increased significantly. BrdUrd incorporation also enhanced radiation induction of transformation above the transformation levels resulting from the independent action of X rays or BrdUrd treatment. These results show that BrdUrd is a transforming agent in C3H 10T1/2 cells and thus may be a carcinogen and that BrdUrd can enhance radiation-induced transformation.  相似文献   

16.
Abstract. Two methods involving labelling cells with bromodeoxyuridine (BrdUrd) have been used to study by flow cytometry the effect of hyperthermia (43°C for up to 1 h) on Chinese hamster V79 cells. One method involved the use of an antibody to BrdUrd after pulse-labelling the cells either before or at time intervals after treatment. In the second method, the cells were incubated continuously in BrdUrd after heat treatment, and the components of the cell cycle were then visualized by staining with a combination of a bis-bcnzimidazole and ethidium bromide. All three methods showed that heating at 43°C stopped DNA synthesis which, at 37°C, subsequently recovered reaching the normal rate 8–12 h later. The cells in S phase at the time of treatment then progressed to G2 where they were further delayed. Cells heated in G1. after the recommencement of synthesis, progressed around the cycle, albeit slower than in unheated cells. The difference between the cells in G1 and S phases at the time of treatment may account for the greater sensitivity of S phase cells to hyperthermia.  相似文献   

17.
Three types of Giemsa differential staining of sister chromatids were observed in HeLa cells when they were exposed continuously to 5-bromodeoxyuridine (BrdUrd) for three replication cycles. In type-1, about a half set of chromosome complements were composed of pairs of darkly-stained and intermediately-stained chromatids; the other half consisted of pairs of intermediately-stained and lightly-stained chromatids. In type-2, one fourth of chromatids was stained darkly and the remaining ones were stained lightly. In type-3, about a half set of chromosomes consisted of the pairs of darkly-stained and lightly-stained chromatids and the rest of pairs of intermediately-stained and lightly-stained chromatids. Cells showing each differentiation pattern at the third mitotic phase were dependent on the stages of the first DNA synthetic (S) phase at which BrdUrd treatments were initiated. Type-1 cells were observed, when BrdUrd treatment was initiated anywhere from G1 to early S phase, type-2 when treatments were begun in middle S stage, and type-3 when treatments were initiated in the late stages of the first S phase. The appearance of the three types seems to be caused by a different amount of BrdUrd incorporated into DNA between the first (S1) and the second S period (S2). The amount of BrdUrd incorporated is as follows: in type-1 S1>S2, in type-2 S1 S2 and in type-3 S2>S1.By analysing type-1 cells, all of the sister chromatid exchanges (SCEs) occurring during each replication cycle can be accurately counted and distinguished from one another. In cells exposed to BrdUrd above 5 μg/ml, the frequencies of SCEs occurring during S1, S2, and S3 are higher than those detected at lower BrdUrd concentrations. On the other hand, at lower concentrations (0.1–1.0 μg/ml) they occurred at the same frequency during S1, S2, and S3. Thus, SCEs detected at low concentrations are free from the incremental effect of BrdUrd incorporated, and enable us to estimate the spontaneous level of SCE frequency.  相似文献   

18.
This report describes a mathematical model of cell proliferation for simulation of bivariate DNA/bromodeoxyuridine (BrdUrd) distributions. The model formulates the change with time in the frequency of cells with any DNA content and in the amount of incorporated BrdUrd, according to given cytokinetic parameters, i.e., durations and dispersions of cell cycle phases and DNA synthesis rate during S-phase. We have applied this model to sequential DNA/BrdUrd distributions measured for Chinese hamster ovary cells asynchronously grown in vitro, 1) for 30 min in 10 microM BrdUrd followed by growth in BrdUrd-free medium for 0 to 24 h, or 2) during continuous incubation in 3 microM BrdUrd plus 30 microM thymidine for 2 to 24 h. The matches between the experimental and simulated distributions give the G1, S, G2M, and total cell cycle durations (and coefficients of variation) of 5.6 h (0.08), 7.0 h (0.07), 1.4 h (0.16), and 14.0 h (0.05), respectively. The model is shown to be useful for quantitative interpretation of the bivariate distributions.  相似文献   

19.
C3H10T1/2 mouse embryo cells exhibiting strong contact inhibition of growth at confluency were grown in the presence of 5-bromodeoxyuridine (BrdUrd) or 5-iododeoxyuridine (IdUrd) (0-1.2 microM) with daily refeeding and exposed to gamma-rays (6 Gy) either in the logarithmic or the plateau phase of growth. Sensitization to radiation was observed in both growth states with increasing concentration of BrdUrd or IdUrd but the degree of sensitization achieved was lower for plateau-phase cells. Because the degree of [H3]BrdUrd incorporation was found to be similar in exponentially growing and plateau-phase cells, it is hypothesized that the radiosensitization caused by pyrimidine analogues may be affected by the physiological state of the cells at the time of irradiation. Delayed plating of plateau-phase cells (6 h) caused an increase in survival, indicating repair of potentially lethal damage (PLD). A greater increase in cell survival was observed in cells that had been grown in the presence of BrdUrd and IdUrd and it was found to increase with increasing concentrations. This analogue-concentration dependent PLD repair activity resulted in an almost complete loss of the radiosensitizing effect in delayed plated plateau-phase cells up to a concentration of about 0.6 microM of BrdUrd and IdUrd. Both compounds, but especially BrdUrd, caused a relaxation in the mechanism of contact inhibition and led to higher cell densities in the plateau phase. The results suggest that repair and/or expression of PLD might be involved in the mechanism underlying BrdUrd and IdUrd-mediated radiosensitization and point out the potential importance of PLD repair in the modulation of the radiosensitizing effect of these compounds in their clinical application.  相似文献   

20.
We have utilized monoclonal antibody against BrdUrd to detect sister-chromatid exchanges in CHO cells. This technique allows detection of SCEs at very low levels of BrdUrd incorporation. At incorporation level of 0.5%, a frequency of about 2 SCEs/cell/cycle was found. In a UV-sensitive mutant (43-3B) which has an increased spontaneous frequency of SCEs, it is found that this increase is due to incorporated BrdUrd. In MMS- and MMC-treated cells, an influence of BrdUrd on the frequencies of induced SCEs was found only when high concentrations of mutagens were employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号