首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物对有机氮源的利用及其在自然生态系统中的意义   总被引:12,自引:1,他引:12  
崔晓阳 《生态学报》2007,27(8):3500-3512
近来大量实验研究表明,许多植物能够在不经矿化的情况下直接吸收、利用环境介质中的生物有机氮,尤其氨基酸类。而且,有些植物利用氨基酸的效率可以与矿质氮源(NH4 、NO3)相当或更高。自然界植物赖以生存的土壤生境中同时存在多种有机氮和矿质氮养分,这是导致植物(至少部分植物)进化产生利用各种不同氮源能力的环境驱动力。土壤中的游离氨基酸尽管含量不高,但其周转快、通量大,理论上可远大于植物的氮需求。尽管植物在与土壤微生物的有机氮源竞争中处于根本性劣势,但土壤中氨基酸的巨大潜在通量和植物相对于微生物的生命周期仍可使植物在长期竞争中获取数量可观的氮。基于植物根对氨基酸的吸收能力、土壤中游离氨基酸库的大小和通量、植物与土壤微生物对氨基酸氮源的竞争以及有关的原位实验结果,近来许多研究者都认为植物有机氮营养在多种生态系统中是重要或潜在重要的。尤其是在一些极地、高山、亚高山、北方针叶林或泰加林生态系统中,由于低温等因素限制有机氮矿化,土壤氨基酸浓度常超过矿质氮(NH4 、NO3-)浓度,氨基酸可能代表着植物的一个主要氮源。认识到现实生态系统中植物对有机氮源利用的重要性意味着传统的矿质营养观念的更新,这将在很大程度上改变人们对某些重要生态过程的理解,并导致对若干生态学中心问题的再认识。研究以森林生态系统为例,阐述了我国开展该领域研究的科学意义和基本框架。  相似文献   

2.
Summary In laboratory incubation studies 2-amino-4-chloro-6-methyl pyrimidine (AM) and 2-sulfanilamidothiazole (ST) gave partial control of nitrification in soil. In a pot experiment, millable cane yield, dry matter synthesis, and nitrogen uptake were significantly increased by these chemicals. The results are discussed with respect to suppression of nitrification as related to concentration of inorganic nitrogen in soil and growth of sugarcane.  相似文献   

3.
1. Plants take nutrients from the rhizosphere via two pathways: (i) by absorbing soil nutrients directly via their roots and (ii) indirectly via symbiotic associations with nutrient‐providing microbes. Herbivorous insects can alter these pathways by herbivory, adding their excrement to the soil, and affecting plant–microbe associations. 2. Little is known, however, about the effects of herbivorous insects on plant nutrient uptake. Greenhouse experiments with soybean, aphids, and rhizobia were carried out to examine the effects of aphids on plant nutrient uptake. 3. First, the inorganic soil nitrogen and the sugar in aphid honeydew between aphid‐infected and ‐free plants were compared. It was found that aphid honeydew added 41 g m?2 of sugar to the soil, and that aphids decreased the inorganic soil nitrogen by 86%. This decrease may have been caused by microbial immobilisation of soil nitrogen followed by increased microbial abundance as a result of aphid honeydew. 4. Second, nitrogen forms in xylem sap between aphid‐infected and ‐free plants were compared to examine nitrogen uptake. Aphids decreased the nitrogen uptake via both pathways, and strength of the impact on direct uptake via plant roots was greater than indirect uptake via rhizobia. The reduced nitrogen uptake by the direct pathway was as a result of microbial immobilisation, and that by the indirect pathway was probably because of the interaction of microbial immobilisation and carbon stress, which was caused by aphid infection. 5. The present results demonstrate that herbivorous insects can negatively influence the two pathways of plant nutrient uptake and alter their relative importance.  相似文献   

4.
In most soils, inorganic phosphorus occurs at fairly low concentrations in the soil solution whilst a large proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can indeed be adsorbed onto positively charged minerals such as Fe and Al oxides. Phosphate (P) ions can also form a range of minerals in combination with metals such as Ca, Fe and Al. These adsorption/desorption and precipitation/dissolution equilibria control the concentration of P in the soil solution and, thereby, both its chemical mobility and bioavailability. Apart from the concentration of P ions, the major factors that determine those equilibria as well as the speciation of soil P are (i) the pH, (ii) the concentrations of anions that compete with P ions for ligand exchange reactions and (iii) the concentrations of metals (Ca, Fe and Al) that can coprecipitate with P ions. The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. The aim of this paper is to give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants. Amongst these, the uptake activity of plant roots should be taken into account in the first place. A second group of activities which is of major concern with respect to P bioavailability are those processes that can affect soil pH, such as proton/bicarbonate release (anion/cation balance) and gaseous (O2/CO2) exchanges. Thirdly, the release of root exudates such as organic ligands is another activity of the root that can alter the concentration of P in the soil solution. These various processes and their relative contributions to the changes in the bioavailability of soil inorganic P that can occur in the rhizosphere can considerably vary with (i) plant species, (ii) plant nutritional status and (iii) ambient soil conditions, as will be stressed in this paper. Their possible implications for the understanding and management of P nutrition of plants will be briefly addressed and discussed.  相似文献   

5.
植物吸收利用有机氮营养研究进展   总被引:4,自引:0,他引:4  
植物矿质营养学问世以后,人们一直认为无机氮是植物吸收氮素的主要形态.随着研究手段的改进和研究内容的不断深入,现已证实许多没有菌根的维管植物都可以直接吸收可溶性有机氮,特别是小分子的氨基酸.由此引起了人们对植物有机营养、植物营养方式多样化问题的重视.研究表明:氨基酸可以通过多种方式释放到土壤溶液中,土壤中的氨基酸主要来源于微生物、动植物及其代谢产物等.土壤氨基酸含量受土壤温湿度、所施的有机肥料、生长的植物种类及其生长发育时期的影响.植物对氨基酸的吸收是一个主动吸收过程,受载体调节,并与能量状况有关,同时受介质中pH和温度的影响.但是有关植物吸收氨基酸的机理及其生态过程还需进行深入的研究.  相似文献   

6.
The present article centres on the contribution of soil animals to organic. matter decomposition and nitrogen mineralization in natural and agro-ecosystems. Criteria are presented for the categorisation of the soil fauna in functional groups in order to be able to quantify the contribution of the soil fauna. Three types of classifications: size, habitat and food, are discussed. For various natural ecosystems, such as prairies and forests, and for agro-ecosystems a rather similar outcome of the faunal contribution to nitrogen mobilization of approximately 30% appears to exist. This value is dependent on various types of interactions among functional groups, changes in population density of microorganisms and soil fauna, seasonally changing abiotic factors and management, such as fertilization, harvesting and addition of harvest residues to the soil. Finally, to improve management of ecosystems as related to soil faunal activity in decomposition, lines are set out for further research such as the development of dynamic models, studies concerning the effects of perturbation in relation to microbial dominance and the integration of the study of below-ground food webs with ecological theories.  相似文献   

7.
8.
9.
1. The Lotic Intersite Nitrogen eXperiment (LINX) was a coordinated study of the relationships between North American biomes and factors governing ammonium uptake in streams. Our objective was to relate inter‐biome variability of ammonium uptake to physical, chemical and biological processes. 2. Data were collected from 11 streams ranging from arctic to tropical and from desert to rainforest. Measurements at each site included physical, hydraulic and chemical characteristics, biological parameters, whole‐stream metabolism and ammonium uptake. Ammonium uptake was measured by injection of 15N‐ammonium and downstream measurements of 15N‐ammonium concentration. 3. We found no general, statistically significant relationships that explained the variability in ammonium uptake among sites. However, this approach does not account for the multiple mechanisms of ammonium uptake in streams. When we estimated biological demand for inorganic nitrogen based on our measurements of in‐stream metabolism, we found good correspondence between calculated nitrogen demand and measured assimilative nitrogen uptake. 4. Nitrogen uptake varied little among sites, reflecting metabolic compensation in streams in a variety of distinctly different biomes (autotrophic production is high where allochthonous inputs are relatively low and vice versa). 5. Both autotrophic and heterotrophic metabolism require nitrogen and these biotic processes dominate inorganic nitrogen retention in streams. Factors that affect the relative balance of autotrophic and heterotrophic metabolism indirectly control inorganic nitrogen uptake.  相似文献   

10.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12  
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

11.
Abstract A previously described growth model of the vegetative grass crop is extended to include a simple representation of the root system, uptake of nitrogen from a soil nitrogen pool, and response to fertilizer application. The model simulates the processes of light interception, photosynthesis, partitioning of new growth, leaf area expansion, growth and maintenance respiration, ageing of plant tissues, senescence, recycling of substrates from senescing tissues, nitrogen uptake by the plant, leaching, mineralization, and fertilizer application. A principal component of the model, nitrogen uptake, is assumed to depend positively on plant carbon substrate concentration and soil nitrogen concentration, and to be inhibited by plant nitrogen substrate concentration. The dynamic responses to different levels of soil nitrogen, of shoot and root growth, nitrogen uptake and root activity, carbon and nitrogen plant substrate concentrations, and the fraction of substrate carbon used by the shoots, are examined; realistic behaviour is observed. The model predicts nitrogen fertilizer responses of yield and plant nitrogen content, which are compared directly with experimental data; good agreement is obtained.  相似文献   

12.
采用盆栽试验,研究了有机无机肥配施对麦-稻轮作系统中水稻氮素累积动态和土壤氮素供应动态的影响,并从微生物学角度探讨了有机无机肥协同提高水稻氮肥利用率的机制.结果表明:有机无机肥配施处理的土壤微生物生物量碳、氮和矿质态氮在水稻分蘖期前低于化肥处理,而在抽穗期至灌浆期显著高于其他处理.土壤氮素供应动态与水稻吸收利用氮素规律吻合程度最高,促进了水稻产量、生物量和氮素累积量的增加,显著提高了水稻的氮肥利用率.其主要机制是有机无机肥配施促进了土壤微生物繁殖,使其在水稻生育前期固持了较多的矿质氮,在水稻生育中、后期这些氮素逐渐被释放以供水稻吸收利用,较好地满足了水稻各阶段生长发育对氮素养分的需求.  相似文献   

13.
根系氮吸收过程及其主要调节因子   总被引:5,自引:0,他引:5  
氮(N)是植物根系吸收最多的矿质元素之一.全球变化将使土壤中N的有效性发生改变,影响陆地生态系统碳分配格局与过程.研究根系N吸收及其调控对预测生态系统结构和功能具有重要理论意义.由于土壤中存在多种形态的N源,长期的生物进化和环境适应导致植物根系对不同形态N的吸收部位、机理及调控有较大差别.因此,植物长期生长在以某一形态N源为主的土壤上就形成了不同的N吸收机制和策略.本文简述了近年来在植物根系N吸收和调控方面的最新研究进展,重点评述了不同形态N在土壤中的生物有效性,根系N吸收部位,N在木质部中的装载和运输,不同形态N(NO3^-、NH4^+和有机氮)的吸收机制,以及根系N吸收的自身信号调控和环境因子对根系N吸收的影响.在此基础上,提出了目前根系N吸收研究中存在的几个问题.  相似文献   

14.
Abstract. The effect upon potential maximum nitrogen uptake rate of root morphology and nitrogen availability in soil was investigated using a simple nutrient transport model. Parameter values appropriate to an ecological or an agricultural context were introduced from the literature. The model predicted that the maximum uptake rate of nitrate was morphology-dependent only at extremely low concentrations. For ammonium, this was so for all realistic concentrations, assuming a high potential maximum uptake rate. The important concentration range for ammonium was two orders of magnitude greater than that for nitrate. With a lower potential maximum uptake rate of ammonium, root morphology was important below 15/igNg' soil, the concentration range in this case being a single order of magnitude greater than that for nitrate. The effects of root hairs were to decrease the threshold concentration for morphology-dependence, and to minimize root dry weight per unit volume of soil needed to maintain maximum nitrogen uptake rate. The effects of simultaneous mass flow of solution were negligible. The possible significance of these effects upon plant growth are discussed in relation to nitrogen availability.  相似文献   

15.
Despite the growing concern about the importance of silicon (Si) in controlling ecological processes in aquatic ecosystems, little is known about its processing in riparian vegetation, especially compared to nitrogen (N) and phosphorus (P). We present experimental evidence that relative plant uptake of N and P compared to Si in riparian vegetation is dependent on mowing practices, water-logging and species composition. Results are obtained from a controlled and replicated mesocosm experiment, with a full-factorial design of soil water logging and mowing management. In our experiments, the Si excluding species Plantago lanceolata was dominant in the mown and non-waterlogged treatments, while Si accumulating meadow grasses and Phalaris arundinacea dominated the waterlogged treatments. Although species composition, management and soil moisture interacted strongly in their effect on relative Si:N and Si:P uptake ratios, the uptake of N to P remained virtually unchanged over the different treatments. Our study sheds new light on the impact of riparian wetland ecosystems on nutrient transport to rivers. It indicates that it is essential to include Si in future studies of the impact of riparian vegetation on nutrient transport, as these are often implemented as a measure to moderate excessive N and P inputs.  相似文献   

16.
Two major groups of plant secondary compounds, phenolic compounds and terpenes, may according to current evidence mediate changes in soil C and N cycling, but their exact role and importance in boreal forest soils are largely unknown. In this review we discuss the occurrence of these compounds in forest plants and soils, the great challenges faced when their concentrations are measured, their possible effects in regulating soil C and N transformations and finally, we attempt to evaluate their role in connection with certain forest management practices. In laboratory experiments, volatile monoterpenes, in the concentrations found in the coniferous soil atmosphere, have been shown to inhibit net nitrogen mineralization and nitrification; they probably provide a C source to part of the soil microbial population but are toxic to another part. However, there is a large gap in our knowledge of the effects of higher terpenes on soil processes. According to results from laboratory experiments, an important group of phenolic compounds, condensed tannins, may also affect microbial processes related to soil C and N cycling; one mechanism is binding of proteins and certain other organic N-containing compounds. Field studies revealed interesting correlations between the occurrence of terpenes or phenolic compounds and C or net N mineralization in forest soils; in some cases these correlations point in the same direction as do the results from laboratory experiments, but not always. Different forest management practices may result in changes in both the quantity and quality of terpenes and phenolic compounds entering the soil. Possible effects of tree species composition, clear-cutting and removal of logging residue for bioenergy on plant secondary compound composition in soil are discussed in relation to changes observed in soil N transformations.  相似文献   

17.
Nie M  Wang Y  Yu J  Xiao M  Jiang L  Yang J  Fang C  Chen J  Li B 《PloS one》2011,6(3):e17961
Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants' ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil.  相似文献   

18.
 High concentrations of heavy metals in soil have an adverse effect on micro-organisms and microbial processes. Among soil microorganisms, mycorrhizal fungi are the only ones providing a direct link between soil and roots, and can therefore be of great importance in heavy metal availability and toxicity to plants. This review discusses various aspects of the interactions between heavy metals and mycorrhizal fungi, including the effects of heavy metals on the occurrence of mycorrhizal fungi, heavy metal tolerance in these micro-organisms, and their effect on metal uptake and transfer to plants. Mechanisms involved in metal tolerance, uptake and accumulation by mycorrhizal hyphae and by endo- or ectomycorrhizae are covered. The possible use of mycorrhizal fungi as bioremediation agents in polluted soils or as bioindicators of pollution is also discussed. Accepted: 23 June 1997  相似文献   

19.
Abstract Roots of sterile-grown, intact 6-day-old seedlings of Ricinus communis possess at least two independent active amino acid uptake systems, one for neutral and one for basic amino acids. The kinetics of uptake of L-proline and L-arginine, which were taken as representative substrates for the two systems, are biphasic. At low concentrations (0.01–0.5 mol m?3) Michaelis -Menten kinetics prevail, changing to a linear concentration dependence at higher substrate concentrations (1–50 mol m?3). L-glutamate uptake velocity is linear over the whole substrate concentration range. For comparison the uptake kinetics of nitrate and ammonium were determined as well as interactions among the different nitrogen sources. The Km value for nitrate uptake was 0.4 mol m?3, and for ammonium 0.1 mol m?3. The uptake capacity for nitrate or ammonium was approximately the same as for amino acids. The interaction between the uptake systems for organic and inorganic nitrogen is small. Two hypotheses for the physiological significance of amino acid uptake by roots were considered: (i) Uptake of amino acids from the soil-determination of amino acids in soil and in soil water indicates that they might contribute 15–25% to the nitrogen nutrition of the plant. (ii) Amino acid uptake systems of root cells serve primarily as retrieval of amino acids delivered from the phloem- it was found that 14C L-glutamine, which was delivered to the cotyledon and transported to the root via the phloem, was not lost by the roots, whereas it appeared in the bathing medium if L-glutamine was applied externally to the root to compete for the uptake sites; this suggests that an apoplastic pool of amino acids in the root exists due to their efflux from the phloem.  相似文献   

20.
The capability to utilize different forms of nitrogen (N) by sorghum (Sorghum bicolor), rice (Oryza sativa), maize (Zea mays), and pearl millet (Pennisetum glaucum) was determined in pot experiments. Seedlings were grown for 21 d without N, or with 500 mg N kg(-1) soil applied as ammonium nitrate, rice bran or a mixture of rice bran and straw. No treatment-dependent changes of root length, surface area, and fractal dimension were observed. Shoot growth and N uptake in maize and pearl millet correlated with the inorganic N (ammonium and nitrate) concentration in the soil, suggesting that these species depend upon inorganic N uptake. On the other hand, shoot growth and N uptake patterns in sorghum and rice indicated that these two species could compensate low inorganic N levels in the organic material treatments by taking up organic N (proteins). Analysis of N uptake rates in solution culture experiments confirmed that sorghum and rice roots have higher capabilities to absorb protein N than maize and pearl millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号