首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Placental hypoxia has been implicated in pregnancy pathologies, including fetal growth restriction and preeclampsia; however, the mechanism by which the trophoblast cell responds to hypoxia has not been adequately explored. Glucose transport, a process crucial to fetoplacental growth, is upregulated by hypoxia in a number of cell types. We investigated the effects of hypoxia on the regulation of trophoblast glucose transporter (GLUT) expression and activity in BeWo choriocarcinoma cells, a trophoblast cell model, and human placental villous tissue explants. GLUT1 expression in BeWo cells was upregulated by the hypoxia-inducing chemical agents desferroxamine and cobalt chloride. Reductions in oxygen tension resulted in dose-dependent increases in GLUT1 and GLUT3 expression. Exposure of cells to hypoxic conditions also resulted in an increase in transepithelial glucose transport. A role for hypoxia-inducible factor (HIF)-1 was suggested by the increase in HIF-1 as a result of hypoxia and by the increase in GLUT1 expression following treatment of BeWo with MG-132, a proteasomal inhibitor that increases HIF-1 levels. The function of HIF-1 was confirmed in experiments where the hypoxic upregulation of GLUT1 and GLUT3 was inhibited by antisense HIF-1. In contrast to BeWo cells, hypoxia produced minimal increases in GLUT1 expression in explants; however, treatment with MG-132 did upregulate syncytial basal membrane GLUT1. Our results show that GLUTs are upregulated by hypoxia via a HIF-1-mediated pathway in trophoblast cells and suggest that the GLUT response to hypoxia in vivo will be determined not only by low oxygen tension but also by other factors that modulate HIF-1 levels. glucose transporter 1; glucose transporter 3; glucose transport  相似文献   

3.
4.
Arachidonic acid (AA) at 0.2 mM enhances glucose uptake through increased levels of glucose transporter (GLUT) 1 protein in 3T3-L1 adipocytes. Since AA is a precursor of prostaglandins (PGs), we investigated the effect of PGs on glucose consumption in 3T3-L1 cells. Among several PGs, only prostaglandin F(2)alpha (PGF(2)alpha) enhanced glucose consumption in 3T3-L1 cells treated with dexamethasone (DEX), 3-isobutyl-1-methyl-xanthine (IBMX), and insulin. To study the mechanism of PGF(2)alpha-enhanced glucose consumption, we investigated the effect of PGF(2)alpha on glycerol-3-phosphate dehydrogenase (GPDH) activity, triglycerides (TGs) content, and the expression of GLUT1 protein. PGF(2)alpha suppressed GPDH activity and did not increase the expression of GLUT1 protein in 3T3-L1 cells treated with DEX, IBMX, and insulin. These results suggest that AA-stimulated glucose uptake is not through the effect of PGF(2)alpha. Our results indicate that PGF(2)alpha is a unique regulator of adipocyte differentiation (suppression) and glucose consumption (enhancement) in 3T3-L1 cells.  相似文献   

5.
6.
7.
Extracellular ATP is an ubiquitous mediator that regulates several cellular functions via specific P2 plasma membrane receptors (P2Rs), for which a role in modulating intracellular glucose metabolism has been recently suggested. We have investigated glucose uptake in response to P2Rs stimulation in fibroblasts from type 2 diabetic (T2D) patients and control subjects. P2Rs expression was evaluated by RT-PCR; intracellular calcium release by fluorometry; glucose transporter (GLUT1) translocation by immunoblotting and chemiluminescence; glucose uptake was measured with 2-deoxy-D-[1-(3)H]glucose (2-DOG) and ATP by luminometry. Cells from T2D patients, in contrast to those from healthy controls, showed no increase in glucose uptake after ATP stimulation; extracellular ATP caused, however, a similar GLUT1 recruitment to the plasma membrane in both groups. P2Rs expression did not differ between fibroblasts from diabetic and healthy subjects, but while plasma membrane depolarization, a P2X-mediated response was similar in both groups, no evident intracellular calcium increase was detectable in the cells from the former group. The calcium response in fibroblasts from diabetics was restored by co-incubation with apyrase or hexokinase, suggesting that P2YRs in those cells were normally expressed but chronically desensitised. In support to this finding, fibroblasts from T2D subjects secreted a two-fold larger amount of ATP compared to controls. Pre-treatment with apyrase or hexokinase also restored ATP stimulated glucose uptake in fibroblasts from diabetic subjects. These results suggest that extracellular ATP plays a role in the modulation of glucose transport via GLUT1, and that the P2Y-dependent GLUT1 activation is deficient in fibroblasts from T2D individuals. Our observations may point to additional therapeutic targets for improving glucose utilization in diabetes.  相似文献   

8.
9.
10.
To evaluate the role of hypoxia-inducible factor 1alpha (HIF-1alpha) and its TCR activation-inducible short isoform I.1 in T cell functions, we genetically engineered unique mice with: 1) knockout of I.1 isoform of HIF-1alpha; 2) T cell-targeted HIF-1alpha knockdown; and 3) chimeric mice with HIF-1alpha gene deletion in T and B lymphocytes. In all three types of mice, the HIF-1alpha-deficient T lymphocytes, which were TCR-activated in vitro, produced more proinflammatory cytokines compared with HIF-1alpha-expressing control T cells. Surprisingly, deletion of the I.1 isoform, which represents < 30% of total HIF-1alpha mRNA in activated T cells, was sufficient to markedly enhance TCR-triggered cytokine secretion. These data suggest that HIF-1alpha not only plays a critical role in oxygen homeostasis but also may serve as a negative regulator of T cells.  相似文献   

11.
12.
The systemic inflammatory response to infection is the leading cause of mortality in North American intensive-care units. Although much is known about inflammatory mediators, the relationships between microregional inflammation, microvascular heterogeneity, hypoxia, hypoxia-inducible gene expression, and myocardial dysfunction are unknown. Male Sprague-Dawley rats were injected intraperitoneally with LPS to test the hypothesis that sepsis-induced local inflammation and increased microvascular heterogeneity are spatially and temporally associated with hypoxia, hypoxia-inducible gene expression, and decreased left-ventricular contractility. Using a combination of three-dimensional microvascular imaging, tissue Po(2), and pressure-volume conductance measurements, we found that 5 h after LPS, minimum oxygen-diffusion distances increased (P < 0.05), whereas tissue oxygenation and contractility both decreased (P < 0.05) in the left ventricle. Real-time RT-PCR analysis revealed that the hypoxia-inducible genes hypoxia-inducible factor (HIF)-1alpha, VEGF, and glucose transporter (GLUT) 1 were all upregulated (P < 0.05) in the left ventricle. Tissue regions expressing ICAM-1, obtained by using laser-capture microdissection, had increased HIF-1alpha and GLUT1 (P < 0.05) gene expression. VEGF gene expression was more diffuse. In LPS rats, GLUT1 gene expression correlated (P < 0.05) with left-ventricular contractility. In 5-h hypoxic cardiomyocytes, we found strong transient HIF-1alpha, weak VEGF, and greater prolonged GLUT1 gene expression. By comparison, the HIF-1alpha-GLUT1 gene-induction pattern was reversed in the left ventricle of LPS rats. Together, these results show that LPS induces hypoxia in the left ventricle associated with increased microvascular heterogeneity and decreased contractility. HIF-1alpha and GLUT1 gene induction are related to a heterogeneous ICAM-1 expression and may be cardioprotective during the onset of septic injury.  相似文献   

13.
14.
Hepatitis C virus (HCV) infection is one of the major causes of chronic hepatitis, liver cirrhosis, which subsequently leads to hepatocellular carcinoma (HCC). The overexpression of the angiogenic factors has been demonstrated in HCC. In this study, we investigated the potential of HCV gene expression in inducing angiogenesis. Our results show that HCV infection leads to the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha). We further show that this stabilization was mediated via oxidative stress induced by HCV gene expression. The activation of NF-kappaB, STAT-3, PI3-K/AkT, and p42/44 mitogen-activated protein kinase was necessary for HIF-1alpha stabilization. HIF-1alpha induction in turn led to the stimulation of vascular endothelial growth factor. By using the chick chorioallantoic membrane assay, we show that HCV-infected cells released angiogenic cytokines, leading to neovascularization in vivo. These results indicate the potential of HCV gene expression in angiogenesis.  相似文献   

15.
16.
Recently, mounting evidence has emerged to suggest that hyperbaric oxygenation (HBOT)-induced neuroprotection after experimental global ischemia and subarachnoid hemorrhage entails a decrease in the expression of hypoxia-inducible factor-1alpha (HIF-1alpha). Therefore, the purpose of this study was to test the hypothesis that oxygen-induced neuroprotection after neonatal hypoxia-ischemia involves alterations in the expression of HIF-1alpha. Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 h of hypoxia (8% O(2) at 37 degrees C). Pups were then treated with HBOT (2.5 ATA) or normobaric oxygenation treatment (NBOT) for 2 h. The expression and phosphorylation status of HIF-1alpha was evaluated at intervals up to 24 h after the insult, as was the expression of glucose transporter (GLUT)-1, GLUT-3, lactate dehydrogenase (LDH), aldolase (Ald), and p53. The protein-protein interaction of HIF-1alpha and p53 was also examined. An elevated expression of HIF-1alpha, GLUT-1, GLUT-3, Ald, and LDH was observed after the insult. An increase in the dephosphorylated form of HIF-1alpha was followed by an increase in the association of HIF-1alpha with p53 and an increase in p53 levels. Both HBOT and NBOT reduced the elevated expression of HIF-1alpha and decreased its dephosphorylated form. Furthermore, both treatments promoted a transient increase in the expression of GLUT-1, GLUT-3, LDH, and Ald, while decreasing the HIF-1alpha-p53 interaction and decreasing the expression of p53. Therefore, the alteration of the HIF-1alpha phenotype by a single oxygen treatment may be one of the underlying mechanisms for the observed oxygen-induced neuroprotection seen when oxygen is administered after a neonatal hypoxic-ischemic insult.  相似文献   

17.
Associations between the AC150887.4:c.-1768T>A SNP (rs41255711), which is located in the 5' upstream region of the IL8RA gene (also known as CXCR1), and the estimated breeding values for somatic cell score in the first (P = 0.019) and second (P = 0.035) lactations were previously reported in a population of Canadian Holstein bulls. In the present study, we evaluated the impact of this SNP on the expression of IL8RA by qRT-PCR. Neutrophils were isolated from whole blood samples from a group of cows with genotypes c.-1768AA (n = 4), c.-1768AT (n = 5) and c.-1768TT (n = 5) after the cows had been challenged in vitro with lipopolysaccharide (LPS). This study demonstrated that LPS-induced expression of IL8RA in cows with the c.-1768AA genotype was significantly greater when compared with the c.-1768AT and c.-1768TT genotypes (P < 0.05) before as well as after in vitro LPS challenge.  相似文献   

18.
The effect of prostaglandin F2alpha (PGF2alpha) on glucose transport in differentiated 3T3-L1 adipocytes was examined. Whereas PGF2alpha had little influence on insulin-stimulated 2-deoxyglucose uptake, it increased basal glucose uptake in a time- and dose-dependent manner, reaching maximum at approximately 8 h. The long-term effect of PGF2alpha on glucose transport was inhibited by both cycloheximide and actinomycin D. In concord, while the content of GLUT4 protein was not altered, immunoblot and Northern blot analyses revealed that both GLUT1 protein and mRNA levels were increased by exposure of cells to PGF2alpha. The effect of PGF2alpha on glucose uptake was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate (PMA), the stimulatory effects of PGF2alpha on glucose transport and GLUT1 mRNA accumulation were both inhibited. In accord, PMA was shown to stimulate GLUT1 mRNA accumulation. To further investigate if PKC may be activated by PGF2alpha, we tested several diacylglycerol-sensitive PKC isozymes and found that PGF2alpha was able to activate PKCepsilon. Taken together, these results indicate that PGF2alpha may enhance glucose transport in 3T3-L1 adipocytes by stimulating GLUT1 expression via a PKC-dependent mechanism.  相似文献   

19.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号