首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.  相似文献   

2.
Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening.  相似文献   

3.
4.
Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations.  相似文献   

5.
The population structure, virulence, and antimicrobial resistance of uropathogenic E. coli (UPEC) from cats are rarely characterized. The aim of this study was to compare and characterize the UPEC isolated from cats in four geographic regions of USA in terms of their multilocus sequence typing (MLST), virulence profiles, clinical signs, antimicrobial resistance and phylogenetic grouping. The results showed that a total of 74 E. coli isolates were typed to 40 sequence types with 10 being novel. The most frequent phylogenetic group was B2 (n = 57). The most frequent sequence types were ST73 (n = 12) and ST83 (n = 6), ST73 was represented by four multidrug resistant (MDR) and eight non-multidrug resistant (SDR) isolates, and ST83 were significantly more likely to exhibit no drug resistant (NDR) isolates carrying the highest number of virulence genes. Additionally, MDR isolates were more diverse, and followed by SDR and NDR isolates in regards to the distribution of the STs. afa/draBC was the most prevalent among the 29 virulence-associated genes. Linking virulence profile and antimicrobial resistance, the majority of virulence-associated genes tested were more prevalent in NDR isolates, and followed by SDR and MDR isolates. Twenty (50%) MLST types in this study have previously been associated with human isolates, suggesting that these STs are potentially zoonotic. Our data enhanced the understanding of E. coli population structure and virulence association from cats. The diverse and various combinations of virulence-associated genes implied that the infection control may be challenging.  相似文献   

6.
The presence of adhesins is arguably an important determinant of pathogenicity for Uropathogenic Escherichia coli (UPEC). Antimicrobial susceptibilities were tested by agar dilution method, fifteen adhesin genes were detected by polymerase chain reaction, and multilocus sequence typing (MLST) was analyzed in 70 UPEC isolates and 41 commensal E. coli strains. Extended-spectrum β-lactamase (ESBL) was determined with confirmatory test. The prevalence of ESBL-producers in UPEC (53%, 37/70) was higher than the commensal intestinal isolates (7%, 3/41), and 97% (36/37) of the ESBL-producing UPEC harbored bla CTX-M genes. afa was present in 36% (10/28) UPEC isolates from recurrent lower urinary tract infection (UTI), and none in the acute pyelonephritis, acute uncomplicated cystitis or commensal strains (P<0.0001). papG was detected in 28% (20/70) of UPEC isolates, while 5% (2/41) of the commensal strains were papG positive (P = 0.0025), and the prevalence of papG was significantly higher in acute pyelonephritis group (71%) than the other two UTI groups (P<0.0001). The prevalence of flu, yqi, yadN and ygiL was significantly higher in UPEC isolates than in the commensal strains. ESBL-producing UPEC showed a lower prevalence of adhesin genes compared with non-ESBL-producing strains. The MLST profiles were different between UPEC and commensal strains, with ST131 (19%, 13/70) and ST10 (20%, 8/41) being the most common MLSTs, respectively. This study demonstrated that several adhesin genes were more prevalent in UPEC isolates than in commensal E. coli, and afa may be associated with recurrent lower UTI whereas papG is more frequently associated with acute pyelonephritis.  相似文献   

7.

Background  

Suppression subtractive hybridization (SSH) strategy was used with extraintestinal pathogenic Escherichia coli (EXPEC) that cause avian colibacillosis (avian pathogenic E. coli or APEC) and human urinary tract infections (uropathogenic E. coli or UPEC) to determine if they possessed genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments (SFs).  相似文献   

8.
To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx1 and stx2, 2 positive for stx1, and 10 positive for stx2. The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx2 genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.Escherichia coli is an important component of the intestinal microflora of humans and warm-blooded mammals. While E. coli typically harmlessly colonizes the intestinal tract, several E. coli clones have evolved the ability to cause a variety of diseases within the intestinal tract and elsewhere in the host. Those strains that cause enteric infections are generally called diarrheagenic E. coli strains, and their pathogenesis is associated with a number of virulence attributes, which vary according to pathotype (54). Currently, diarrheagenic E. coli strains are classified into six main pathotypes based on their distinct virulence determinants and pathogenic features, including enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC)/Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and diffusively adherent E. coli (DAEC) (37).Among diarrheagenic E. coli strains, STEC strains are distinguished by the ability to cause severe life-threatening complications, such as hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) (30). Other symptoms of STEC infection include watery diarrhea, bloody diarrhea, and hemorrhagic colitis (HC). STEC strains that cause HC and HUS are also called EHEC. Although individuals of all ages are at risk of STEC infection, children younger than 5 years of age and the elderly are more likely to suffer from severe complications (51). Outbreaks and sporadic cases of STEC infections have been reported frequently worldwide.The pathogenesis of STEC infection in humans is not fully understood. The major virulence factors implicated in STEC infection are potent Shiga toxins, which are classified into two groups: Stx1 and Stx2 (23). Additional factors that contribute to virulence have also been described, including intimin (encoded by the eae gene), an outer membrane protein involved in the attachment of E. coli to the enterocyte, and EHEC hemolysin (encoded by EHEC hlyA), which acts as a pore-forming cytolysin and causes damage to cells (41).The first STEC O157 infections were reported in 1982, when E. coli O157:H7 was involved in outbreaks associated with two fast food chain restaurants in the United States (44). Since then, ever-increasing numbers of cases and outbreaks due to STEC O157 have been reported worldwide. Although non-O157 STEC strains have also been associated with human cases and outbreaks, few laboratories have been looking for them, and their potential in causing human infections may be underestimated (2). Recently, though, the significance of non-O157 STEC strains as human pathogens has become more recognized. In the United States alone, there were 23 reported outbreaks of non-O157 STEC infection between 1990 and 2007 (10).Shiga toxin-producing E. coli can be transmitted through different routes, including food and water, person-to-person contact, and animal-to-person contact (9). Most human infections are caused by consumption of contaminated foods (16). Domestic and wild ruminant animals, in particular cattle, are considered the main reservoir of STEC and the main source for contamination of the food supply. Retail meats derived from animals could potentially act as transmission vehicles for STEC and other diarrheagenic E. coli strains. However, there is limited information about STEC contamination in retail meats, and fewer data exist about the presence of other diarrheagenic E. coli strains in retail meats. In the present study, we investigated 7,258 E. coli isolates from four types of meat samples (beef, chicken, pork, and turkey) collected during 2002 to 2007 to assess STEC contamination of retail meats. In addition, the presence of other potentially diarrheagenic E. coli strains was examined by detecting specific virulence determinants among E. coli isolates collected in 2006.  相似文献   

9.
Fimbrial (type 1, P, and S) and afimbrial adhesins, the unique virulence traits of uropathogenic Escherichia coli (UPEC), are well recognized for their role in the initial step of uropathogenesis. In this study, we investigated whether these adhesins are dispensable for UPEC in adherence and invasion of uroepithelial cells by using E. coli isolates (n=40) from cystitis patients and T-24 cells, the bladder carcinoma cell line. We found all isolates adherent to T-24 cells within 15 min of infection. In invasion assay, all isolates could invade T-24 cells to a variable degree; 22.5% of them were found highly invasive. About 33% of isolates that do not have any recognized adhesins were as invasive as other isolates. The amplitude of invasiveness was also independent of the adhesins. In conclusion, this study demonstrates that type 1 fimbriae, P fimbriae, S fimbriae, and afimbrial adhesin I are not required for UPEC to adhere to and invade uroepithelial cells.  相似文献   

10.
Escherichia coli is the major aetiological agent of urinary tract infections (UTI). Like diarrhoeagenic strains of E. coli, uropathogenic isolates possess virulence determinants that distinguish them from commensal strains and allow them to produce the clinical manifestations associated with UTI. Several autotransporter proteins have been associated with the ability of E. coli, and other Gram-negative bacteria, to cause disease. Recently, we described the existence within uropathogenic E. coli (UPEC) strains of Sat, a toxin of the serine protease autotransporter of Enterobacteriaceae (SPATE) subfamily. Using features common to proteins secreted via the autotransporter pathway we have identified nine additional autotransporter proteins from the genomic sequence data of UPEC CFT073. Surprisingly, two additional members of the SPATE subfamily were identified. One protein, designated PicU, was homologous to the Pic protein identified in Shigella flexneri and enteroaggregative E. coli. The PicU protein was expressed and investigated for functional activity.  相似文献   

11.
12.
The adherence of uropathogenic Escherichia coli (UPEC) to the host urothelial surface is the first step for establishing UPEC infection. Uroplakin Ia (UPIa), a glycoprotein expressed on bladder urothelium, serves as a receptor for FimH, a lectin located at bacterial pili, and their interaction initiates UPEC infection. Surfactant protein D (SP-D) is known to be expressed on mucosal surfaces in various tissues besides the lung. However, the functions of SP-D in the non-pulmonary tissues are poorly understood. The purposes of this study were to investigate the possible function of SP-D expressed in the bladder urothelium and the mechanisms by which SP-D functions. SP-D was expressed in human bladder mucosa, and its mRNA was increased in the bladder of the UPEC infection model in mice. SP-D directly bound to UPEC and strongly agglutinated them in a Ca2+-dependent manner. Co-incubation of SP-D with UPEC decreased the bacterial adherence to 5637 cells, the human bladder cell line, and the UPEC-induced cytotoxicity. In addition, preincubation of SP-D with 5637 cells resulted in the decreased adherence of UPEC to the cells and in a reduced number of cells injured by UPEC. SP-D directly bound to UPIa and competed with FimH for UPIa binding. Consistent with the in vitro data, the exogenous administration of SP-D inhibited UPEC adherence to the bladder and dampened UPEC-induced inflammation in mice. These results support the conclusion that SP-D can protect the bladder urothelium against UPEC infection and suggest a possible function of SP-D in urinary tract.  相似文献   

13.
14.
To explore the prevalence of multidrug-resistant community-associated uropathogenic Escherichia coli (UPEC) and their virulence factors in Western Saudi Arabia. A total of 1,000 urine samples were examined for the presence of E. coli by selective plating on MacConkey, CLED, and sheep blood agar. Antimicrobial susceptibility patterns were determined using Vitek® 2 Compact (MIC) and the disc diffusion method with Mueller-Hinton agar. Genes encoding virulence factors (kpsMTII, traT, sat, csgA, vat, and iutA) were detected by PCR. The overall prevalence of UTI-associated E. coli was low, and a higher prevalence was detected in samples of female origin. Many of the isolates exhibited resistance to norfloxacin, and 60% of the isolates showed resistance to ampicillin. No resistance to imipenem, meropenem, or ertapenem was detected. In general, half of the isolates showed multiple resistance patterns. UPEC exhibited a weak ability to form biofilms, where no correlation was observed between multidrug resistance and biofilm-forming ability. All uropathogenic E. coli isolates carried the kpsMTII, iutA, traT, and csgA genes, whereas the low number of the isolates harbored the sat and vat genes. The diversity of virulence factors harbored by community-associated UPEC may render them more virulent and further explain the recurrence/relapse cases among community-associated UITs. To the best of our knowledge, this study constitutes the first exploration of virulence, biofilm-forming ability, and its association with multidrug resistance among UPEC isolates in Saudi Arabia. Further investigations are needed to elucidate the epidemiology of community-associated UPEC in Saudi Arabia. Open in a separate window  相似文献   

15.
Aims: To characterize the diversity of extended‐spectrum beta‐lactamase (ESBL)‐producing Escherichia coli isolates recovered within the faecal microbiota of Iberian lynx. The identification of other associated resistance genes and the analysis of clonal relationship were also focused in this study. Methods and Results: From 2008 to 2010, 128 faecal samples of Iberian lynx (wild and captive animals) were collected. Eleven tested samples contained cefotaxime‐resistant E. coli isolates (all belonging to captive animals) and 10 ESBL‐producing isolates were showed. CTX‐M‐14 and SHV‐12 ESBL‐types were detected and seven different patterns were identified by pulsed‐field gel electrophoresis analysis. Conclusions: The occurrence of unrelated multiresistant E. coli in faecal flora of captive specimens of Iberian lynx, including the presence of ESBLs, resistant genes in integrons and virulence determinants was showed in this study. Significance and Impact of the Study: The results obtained in this study highlight the environmental problem as future reintroductions of Iberian lynx could lead to a spread of resistant bacteria. Additionally, ESBL‐producing bacteria can represent a health problem for this endangered species.  相似文献   

16.
Urinary tract infections (UTI) account for approximately 8 million clinic visits annually with symptoms that include acute pelvic pain, dysuria, and irritative voiding. Empiric UTI management with antimicrobials is complicated by increasing antimicrobial resistance among uropathogens, but live biotherapeutics products (LBPs), such as asymptomatic bacteriuria (ASB) strains of E. coli, offer the potential to circumvent antimicrobial resistance. Here we evaluated ASB E. coli as LBPs, relative to ciprofloxacin, for efficacy against infection and visceral pain in a murine UTI model. Visceral pain was quantified as tactile allodynia of the pelvic region in response to mechanical stimulation with von Frey filaments. Whereas ciprofloxacin promoted clearance of uropathogenic E. coli (UPEC), it did not reduce pelvic tactile allodynia, a measure of visceral pain. In contrast, ASB E. coli administered intravesically or intravaginally provided comparable reduction of allodynia similar to intravesical lidocaine. Moreover, ASB E. coli were similarly effective against UTI allodynia induced by Proteus mirabilis, Enterococccus faecalis and Klebsiella pneumoniae. Therefore, ASB E. coli have anti-infective activity comparable to the current standard of care yet also provide superior analgesia. These studies suggest that ASB E. coli represent novel LBPs for UTI symptoms.  相似文献   

17.
Uncomplicated urinary tract infection (UTI) caused by uropathogenic Escherichia coli(UPEC) is a serious problem not only among humans but also in companion animals such as dogs and cats. The uropathogenic specific protein gene (usp ) is preferentially distributed in UPEC isolates from dogs and cats compared with the distribution of usp in E. coli strains from feces of healthy dogs and cats and this pattern of distribution resembles that observed in human UPEC strains. The UPEC strains from companion animals share common O serotypes like O1, O2, O4, O6, O16, O18, O22, O25 and O75 as those reported for human UPEC. The size variation of the pathogenicity island that includes usp in UPEC from dogs and cats was almost similar to those seen in human UPEC. We propose that dogs and cats are the alternative reservoirs for UPEC strains that are associated with human UTI.  相似文献   

18.
Classical collectins (surfactant protein A and D) play a significant role in innate immunity and host defence in uropathogenic Escherichia coli (UPEC)-induced urinary tract infection (UTI). However, the functions of collectin-11 (CL-11) with respect to UPEC and UTI remain largely unexplored. This study aimed to investigate the effect of CL-11 on UPEC and its role in UTI. We further examined its modulatory effect on inflammatory reactions in proximal tubular epithelial cells (PTECs). The present study provides evidence for the effect of CL-11 on the growth, agglutination, binding, epithelial adhesion and invasion of UPEC. We found increased basal levels of phosphorylated p38 MAPK and human cytokine homologue (keratinocyte-derived chemokine) expression in CL-11 knockdown PTECs. Furthermore, signal regulatory protein α blockade reversed the increased basal levels of inflammation associated with CL-11 knockdown in PTECs. Additionally, CL-11 knockdown effectively inhibited UPEC-induced p38 MAPK phosphorylation and cytokine production in PTECs. These were further inhibited by CD91 blockade. We conclude that CL-11 functions as a mediator of innate immunity via direct antibacterial roles as well as dual modulatory roles in UPEC-induced inflammatory responses during UTI. Thus, the study findings suggest a possible function for CL-11 in defence against UTI.  相似文献   

19.
Bacteria sense environmental cues and regulate gene expression accordingly so as to persist in diverse niches. QseC is a membrane sensor kinase shown in enterohemorrhagic Escherichia coli to respond to host and bacterial signals by phosphorylating the QseB response regulator at residue D51, resulting in QseB activation and presumably upregulation of virulence genes. We studied QseBC in uropathogenic E. coli (UPEC). UPEC establish infection by colonizing and invading bladder cells. After invasion, UPEC can escape into the cytoplasm where they can form intracellular bacterial communities. Deletion of qseC significantly attenuated intracellular bacterial community formation and virulence, whereas paradoxically qseB deletion did not impact pathogenesis. We found that QseB upregulates its own expression in the qseC mutant, arguing that it is activated even in the absence of QseC. However, expression of QseB, but not a QseB_D51A mutant, in the absence of QseC resulted in downregulation of type 1 pili, curli and flagella. We observed similar phenotypes with enterohemorrhagic E. coli , showing that this is not a UPEC-specific phenomenon. Target gene expression is restored when QseC is present. We discovered that QseC has phosphatase activity required for QseB dephosphorylation. Thus, the QseC phosphatase capacity is critical for modulating QseB activity and subsequent gene expression.  相似文献   

20.
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, with uropathogenic Escherichia coli (UPEC) the leading causative organism. UPEC has a number of virulence factors that enable it to overcome host defenses within the urinary tract and establish infection. The O antigen and the capsular polysaccharide are two such factors that provide a survival advantage to UPEC. Here we describe the application of the rpsL counter selection system to construct capsule (kpsD) and O antigen (waaL) mutants and complemented derivatives of three reference UPEC strains: CFT073 (O6:K2:H1), RS218 (O18:K1:H7) and 1177 (O1:K1:H7). We observed that while the O1, O6 and O18 antigens were required for survival in human serum, the role of the capsule was less clear and linked to O antigen type. In contrast, both the K1 and K2 capsular antigens provided a survival advantage to UPEC in whole blood. In the mouse urinary tract, mutation of the O6 antigen significantly attenuated CFT073 bladder colonization. Overall, this study contrasts the role of capsule and O antigen in three common UPEC serotypes using defined mutant and complemented strains. The combined mutagenesis-complementation strategy can be applied to study other virulence factors with complex functions both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号