首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the development of a method to control the outbreak and persistence of red tides using mass-cultured heterotrophic protist grazers, we measured the growth and ingestion rates of cultured Oxyrrhis marina (a heterotrophic dinoflagellate) on cultured Heterosigma akashiwo (a raphidophyte) in bottles in the laboratory and in mesocosms (ca. 60 liter) in nature, and those of the cultured grazer on natural populations of the red-tide organism in mesocosms set up in nature. In the bottle incubation, specific growth rates of O. marina increased rapidly with increasing concentration of cultured prey up to ca. 950 ng C ml(-1) (equivalent to 9,500 cells ml(-1)), but were saturated at higher concentrations. Maximum specific growth rate (mumax), KGR (prey concentration sustaining 0.5 mumax) and threshold prey concentration of O. marina on H. akashiwo were 1.43 d(-1), 104 ng C ml(-1), and 8.0 ng C ml(-1), respectively. Maximum ingestion and clearance rates of O. marina were 1.27 ng C grazer(-1) d(-1) and 0.3 microl grazer(-1) h(-1), respectively. Cultured O. marina grew well effectively reducing cultured and natural populations of H. akashiwo down to a very low concentration within 3 d in the mesocosms. The growth and ingestion rates of cultured O. marina on natural populations of H. akashiwo in the mesocosms were 39% and 40%, respectively, of those calculated based on the results from the bottle incubation in the laboratory, while growth and ingestion rates of cultured O. marina on cultured H. akashiwo in the mesocosms were 55% and 36%, respectively. Calculated grazing impact by O. marina on natural populations of H. akashiwo suggests that O. marina cultured on a large scale could be used for controlling red tides by H. akashiwo near aquaculture farms that are located in small ponds, lagoons, semi-enclosed bays, and large land-aqua tanks to which fresh seawater should be frequently supplied.  相似文献   

2.
Basic nuclear proteins were extracted from isolated nuclei of Oxyrrhis marina. The HPLC pattern of the extract showed a single major peak, which consisted of a major band with an apparent molecular mass of 23 kDa on an SDS-PAGE gel. We designated this protein as Np23 because of its apparent molecular mass. The amino acid composition of this protein revealed its extremely basic nature with a high lysine content. Polyclonal antibodies were raised against Np23. Immunofluorescence microscopy showed that Np23 was localized within the nucleus of dividing and non-dividing cells as well, and immuno-electron microscopy showed that the protein was localized only on chromosomes. These data established that Np23 is the major basic chromosome protein of Oxyrrhis marina.  相似文献   

3.
Dinoflagellates constitute a large proportion of the planktonic biomass from marine to freshwater environments. Some species produce a preservable organic‐walled resting cyst (dinocyst) during the sexual phase of their life cycle that is an important link between the organisms, the environment in which their parent motile theca grew, and the sedimentary record. Despite their abundance and widespread usage as proxy indicators for environmental conditions, there is a lack of knowledge regarding the dinocyst wall chemical composition. It is likely that numerous factors, including phylogeny and life strategy, determine the cyst wall chemistry. However, the extent to which this composition varies based on inherent (phylogenetic) or variable (ecological) factors has not been studied. To address this, we used micro‐Fourier transform infrared spectroscopy to analyze nine cyst species produced by either phototrophic or heterotrophic dinoflagellates from the extant orders Gonyaulacales, Gymnodiniales, and Peridiniales. Based on the presence of characteristic functional groups, two significantly different cyst wall compositions are observed that correspond to the dinoflagellate's nutritional strategy. The dinocyst wall compositions analyzed appeared carbohydrate‐based, but the cyst wall produced by phototrophic dinoflagellates suggested a cellulose‐like glucan, while heterotrophic forms produced a nitrogen‐rich glycan. This constitutes the first empirical evidence nutritional strategy is related to different dinocyst wall chemistries. Our results indicated phylogeny was less important for predicting composition than the nutritional strategy of the dinoflagellate, suggesting potential for cyst wall chemistry to infer past nutritional strategies of extinct taxa preserved in the sedimentary record.  相似文献   

4.
Phagotrophic protists are major consumers of microbial biomass in aquatic ecosystems. However, biochemical mechanisms underlying prey recognition and phagocytosis by protists are not well understood. We investigated the potential roles of cell signaling mechanisms in chemosensory response to prey, and in capture of prey cells, by a marine ciliate (Uronema sp.) and a heterotrophic dinoflagellate (Oxyrrhis marina). Inhibition of protein kinase signal transduction biomolecules caused a decrease in both chemosensory response and predation. Inhibition of G-protein coupled receptor signaling pathways significantly decreased chemosensory response but had no effect on prey ingestion. Inhibitor compounds did not appear to affect general cell health, but had a targeted effect. These results support the idea that cell signaling pathways known in other eukaryotic organisms are involved in feeding behavior of free-living protists.  相似文献   

5.
A new heterotrophic sand‐dwelling dinoflagellate, Ankistrodinium armigerum K. Watanabe, Miyoshi, Kubo, Murray et Horiguchi sp. nov., is described from Ishikari Beach, Hokkaido, Japan and Port Botany, NSW, Australia. The dinoflagellate is laterally compressed, possessing a short triangular epicone and a large sac‐like hypocone. It possesses a right‐handed cingulum and a deeply‐incised sulcus. The sulcus descends towards the posterior of the cell where it becomes much deeper and wider, resulting in a bilobed ventral side to the hypocone, with a greater excavation of the left lobe than the right. In addition, the right lobe of the hypocone is shorter than the left lobe, which allows a partial view of the left sulcal wall when the cell is viewed from its right side. The sulcus ascends in the epicone to form an apical groove. The apical groove is linear but terminates in an ellipsoid fashion and its extremity approaches, but does not form a closed loop with the apical end of the linear portion. The dinoflagellate possesses two distinct size classes of trichocysts. The large trichocysts are located in the posterior part of the cell, while small trichocysts are distributed throughout the cell. The dinoflagellate shares morphological characteristics with the heterotrophic sand‐dwelling dinoflagellate, Ankistrodinium semilunatum, the type species of the genus. These include a laterally compressed cell, a right‐handed cingulum, a deeply‐incised sulcus and the same basic structure to the apical groove. Molecular phylogenetic analyses based on small and large subunits of rDNA showed that in both trees, A. semilunatum and A. armigerum formed a robust clade, suggesting that these two species are closely related. Because no organism with the characteristics of this species exists and because this species is closely related to A. semilunatum, we concluded that this species should be described as a second species of the genus Ankistrodinium.  相似文献   

6.
The marine dinoflagellate Oxyrrhis marina has three major microtubular systems: the flagellar apparatus made of one transverse and one longitudinal flagella and their appendages, cortical microtubules, and intranuclear microtubules. We investigated the dynamic changes of these microtubular systems during cell division by transmission and scanning electron microscopy, and confocal fluorescent laser microscopy. During prophase, basal bodies, both flagella and their appendages were duplicated. In the round nucleus situated in the cell centre, intranuclear microtubules appeared radiating toward the centre of the nucleus from densities located in some nuclear pores. During metaphase, both daughter flagellar apparatus separated and moved apart along the main cell axis. Microtubules of ventral cortex were also duplicated and moved with the flagellar apparatus. The nucleus flattened in the longitudinal direction and became discoid-shaped close to the equatorial plane. Many bundles of microtubules ran parallel to the short axis of the nucleus (cell long axis), between which chromosomes were arranged in the same direction. During ana-telophase, the nucleus elongated along the longitudinal axis and took a dumbbell shape. At this stage a contractile ring containing actin was clearly observed in the equatorial cortex. The cortical microtubule network seemed to be cut into two halves at the position of the actin bundle. Shortly after, the nucleus divided into two nuclei, then the cell body was constricted at its equator and divided into one anterior and one posterior halves which were soon rebuilt to produce two cells with two full sets of cortical microtubules. From our observations, several mechanisms for the duplication of the microtubule networks during mitosis in O. marina are discussed.  相似文献   

7.
In the phylogenetic tree, selenoproteins and the corresponding translation machinery are found in Archaea, Eubacteria, and animals, but not in fungi and higher plants. As very little is known about Protozoa, we searched for the presence of selenoproteins in the primitive dinoflagellate Oxyrrhis marina, belonging to the Protoctista kingdom. Four selenoproteins could be obtained from O. marina cells cultured in the presence of 75Se. Using O. marina or bovine liver cytosolic extracts, we could serylate and selenylate in vitro total O. marina tRNAs. Moreover, the existence of a tRNA(Sec) could be deduced from in vivo experiments. Lastly, an anti-serum against the specialized mammalian translation elongation factor mSelB reacted with a protein of 48-kDa molecular mass. Altogether, our data showed that O. marina contains selenoproteins and suggests that the corresponding translation machinery is related to that found in animals.  相似文献   

8.
To explore the feeding ecology of the Pfiesteria-like dinoflagellate (PLD) Luciella masanensis (GenBank Accession no. AM050344, previously Lucy), we investigated the feeding behavior and the kinds of prey species that L. masanensis fed on and determined its growth and ingestion rates of L. masanensis when it fed on the dinoflagellate Amphidinium carterae and an unidentified cryptophyte species (equivalent spherical diam., ESD=5.6 microm), which were the dominant phototrophic species when L. masanensis and similar small heterotrophic dinoflagellates were abundant in Masan Bay, Korea in 2005. Additionally, these parameters were also measured for L. masanensis fed on blood cells of the perch Lateolabrax japonicus and the raphidophyte Heterosigma akashiwo in the laboratory. Luciella masanensis fed on prey cells by using a peduncle after anchoring the prey with tow filament, and was able to feed on diverse prey such as cryptophytes, raphidophytes, diatoms, mixotrophic dinoflagellates, and the blood cells of fish and humans. Among the prey species tested in the present study, perch blood cells were observed to be the optimal prey for L. masanensis. Specific growth rates of L. masanensis feeding on perch blood cells, A. carterae, H. akashiwo, and the cryptophyte, either increased continuously or became saturated with increasing the mean prey concentration. The maximum specific growth rate of L. masanensis feeding on perch blood cells (1.46/day) was much greater than that of A. carterae (0.59/day), the cryptophyte (0.24/day), or H. akashiwo (0.20/day). The maximum ingestion rate of L. masanensis on perch blood cells (2.6 ng C/grazer/day) was also much higher than that of A. carterae (0.32 ng C/grazer/day), the cryptophyte (0.44 ng C/grazer/day), or H. akashiwo (0.16 ng C/grazer/day). The kinds of prey species which L. masanensis is able to feed on were the same as those of Pfiesteria piscicida, but very different from those of another PLD Stoeckeria algicida. However, the maximum growth and ingestion rates of L. masanensis on perch blood cells, A. carterae, H. akashiwo, and the cryptophyte were considerably lower than those of P. piscicida. Therefore, these three dinoflagellates may occupy different ecological niches in marine planktonic communities, even though they have a similar size and shape and the same feeding mechanisms.  相似文献   

9.
Westermann  Martin  Hoischen  Christian  Wöhlbrand  Lars  Rabus  Ralf  Rhiel  Erhard 《Protoplasma》2023,260(2):529-544
Protoplasma - Antisera were raised against the C-terminal amino acid sequences of the two rhodopsins ADY17806 and AEA49880 of Oxyrrhis marina. The antisera and affinity-purified antibodies thereof...  相似文献   

10.
Oxyrrhis marina, a widely distributed marine protist, is used to model heterotrophic flagellate responses in microbial food webs. Although clonal variability occurs in protists, assessments of intraspecific diversity are rare; such assessments are critical, particularly where species are used as models in ecological studies. To address the extent of intraspecific variation within O. marina, we assessed diversity among 11 strains using 5.8S rDNA and ITS sequences. The 5.8S rDNA and ITS regions revealed high divergence between strains: 63.1% between the most diverse. To compare O. marina diversity relative to other alveolates, 18S rDNA sequences for five strains were analysed with sequences from representatives of the major alveolate groups. 18S rDNA also revealed high divergence in O. marina. Additionally, consistent with phylogenies based on protein coding genes, maximum likelihood analysis indicated that O. marina was monophyletic and ancestral to the dinoflagellates. To assess ecophysiological differences, growth rates of seven O. marina strains were measured at 10 salinities (10-55 per thousand). Two salinity responses occurred: one group achieved highest growth rates at high salinities; the other grew best at low salinities. There was no clear correlation between molecular, ecophysiological, or geographical differences. However, salinity tolerance was associated with habitat type: intertidal strains grew best at high salinities; open-water strains grew best at low salinities. These data indicate the need to examine many strains of a species in both phylogenetic and ecological studies, especially where key-species are used to model ecological processes.  相似文献   

11.
Changes in salinity are known to alter the morphology of protists, and we hypothesized that these changes subsequently alter also the predatory behavior of the dinoflagellate Oxyrrhis marina. Oxyrrhis was grown in media of 33, 25, 20, and 10% of the regular salinity of f/2 medium (31–32‰). In all cases, the cells discharged trichocysts and swelled. Cell surfaces and volumes increased with decreasing salinity, such that cell surface area at least doubled at 10% and the cell volume increased approximately fourfold. After 1 h, the cells started to regain their regular shape, which was almost completed after 24 h. Oxyrrhis immediately regained its regular shape when culture medium was added 5–10 min after the osmotic stress. When incubated with Pyramimonas grossii as prey, those short-term stressed cells showed no significant different prey uptake in comparison to non-stressed cells. In contrast, 24 h after the addition of prey, short-term stressed Oxyrrhis cells had, with weak statistical significance, more Pyramimonas cells engulfed than non-stressed cells. These results indicated that (1) trichocysts were most likely not involved in prey capture and (2) salinity-stressed Oxyrrhis either enhanced its capability to capture more prey, or its digestion apparatus was hampered.  相似文献   

12.
Vulcanodinium is an ecologically relevant dinoflagellate genus due to its production of neurotoxins known as pinnatoxins. We present here the first examination of the sterols of a Vulcanodinium rugosum isolate. Sterols are ringed lipids that assist in maintaining rigidity of cellular membranes, and the Dinophyceae are well-studied for their ability to produce a diverse array of sterols, many of which have chemotaxonomic utility. We have determined that Vrugosum produces a set of major sterols, namely cholesterol, dinosterol, 4α,24-dimethyl-5α-cholest-22E-en-3β-ol, and 4α,24-dimethyl-5α-cholestan-3β-ol, common to the Dinophyceae. However, this displayed marked differences from those studied members of the genera Scrippsiella and Peridinium, the closest phylogenetic relatives. Included in these differences is production by Vrugosum of a much lower percentage of dinostanol, a saturated form of dinosterol.  相似文献   

13.
We explored the feeding ecology of the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense (GenBank accession number=FR720082). Using several different types of microscopes and high-resolution video-microscopy, we investigated feeding behavior and types of prey species that G. shiwhaense feeds upon. Additionally, we measured its growth and ingestion rates on its optimal algal prey, the cryptophyte Teleaulax sp. and the dinoflagellate Amphidinium carterae, as a function of prey concentration. These rates were measured for other edible prey at single prey concentrations at which the growth and ingestion rates of G. shiwhaense were saturated. After anchoring the prey with a tow filament, G. shiwhaense fed using a peduncle, ingesting small algal species with equivalent spherical diameters (ESDs) of <13 μm. However, it did not feed on larger algal species that had ESDs≥13 μm or the small diatom Skeletonema costatum. The specific growth rates for G. shiwhaense feeding upon Teleaulax sp. and A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 180-430 ng C/ml. The maximum specific growth rate of G. shiwhaense on Teleaulax sp. and A. carterae were 1.05 and 0.82/d, respectively. However, Heterosigma akashiwo did not support positive growth of G. shiwhaense. The maximum ingestion rates of G. shiwhaense on Teleaulax sp. and A. carterae were 0.35 and 0.54 ng C/grazer/d, respectively. The calculated grazing coefficients attributable to G. shiwhaense on co-occurring cryptophytes and Amphidinium spp. were 0.01-1.87/d and 0.08-2.60/d, respectively. Our results suggest that G. shiwhaense can have a considerable grazing impact on algal populations.  相似文献   

14.
The mixotroph Yihiella yeosuensis is a small‐ and fast‐swimming dinoflagellate. To investigate its protistan predators, interactions between Y. yeosuensis and 11 heterotrophic protists were explored. No potential predators were able to feed on actively swimming Y. yeosuensis cells, which escaped via rapid jumps, whereas Aduncodinium glandula, Oxyrrhis marina, and Strombidinopsis sp. (approximately 150 μm in cell length) were able to feed on weakly swimming cells that could not jump. Furthermore, Gyrodinium dominans, Luciella masanensis, and Pfiesteria piscicida were able to feed on heat‐killed Yihiella cells, whereas Gyrodinium moestrupii, Noctiluca scintillans, Oblea rotunda, Polykrikos kofoidii, and Strombidium sp. (20 μm) did not feed on them. Thus, the jumping behavior of Y. yeosuensis might be primarily responsible for the observed lack of predation. With increasing Yihiella concentration, the growth rate of O. marina decreased, whereas that of Strombidinopsis did not change. However, with increasing Yihiella concentration (up to 530 ng C/ml), the ingestion rate of Strombidinopsis on Yihiella increased linearly. The highest ingestion rate was 24.1 ng C per predator per d. The low daily carbon acquisition from Yihiella relative to the body carbon content of Strombidinopsis might be responsible for its negligible growth. Thus, Y. yeosuensis might have an advantage over its competitors due to its low mortality rate.  相似文献   

15.
The toxic dinoflagellate Gambierdiscus sp. has recently been observed in temperate areas in the Southern Sea of the Republic of Korea. The purpose of this study was to examine the toxicity of Gambierdiscus sp. toward the marine copepod Tigriopus japonicus. T. japonicus adult females and nauplii were exposed to various concentrations of algae or culture medium to assess toxicity and analyze gene expression patterns in the copepod. Based on the toxicity tests, Gambierdiscus sp. increased the mortality of nauplii and the immobility of adult females. The survival and mobility of T. japonicus were not affected by culture medium lacking Gambierdiscus sp. cells in the toxicity test. However, based on the analysis of gene expression in the copepod, exposure of the copepod to culture medium affected the expression of stress or detoxification-related genes. Further studies to identify toxins in Gambierdiscus sp. are required to increase our understanding of dinoflagellate toxicity.  相似文献   

16.
异养硝化-好氧反硝化(heterotrophic nitrifying-aerobic denitrification,HN-AD)菌的发现打破了传统的脱氮理论,可以在有氧条件下同时进行硝化和反硝化,成为近年来的研究热点。HN-AD细菌在海洋氮循环中发挥着重要作用。本文对海洋环境中HN-AD菌的多样性和部分已知氮代谢途径及相关酶系进行了介绍,分析了盐度、碳氮比、溶解氧、pH等环境因素对HN-AD菌脱氮效果的影响,对其工艺和技术应用、前景和发展方向进行了综述和展望。  相似文献   

17.
18.
Within U.S. waters, blooms of the dinoflagellate, Pfiesteria piscicida, have been recorded on an almost regular basis in the Chesapeake Bay and surrounding mid‐Atlantic regions for the last two decades. Despite the apparent significance of such blooms to the environment and human health and the attendant economic consequences, little work has addressed the physiology and biochemistry, particularly that of sterol composition, of P. piscicida. GC‐MS characterization of trimethylsilyl ether derivatives of sterols from free sterol and sterol ester fractions was performed in an effort to determine whether P. piscicida produces unique sterols that may serve as potential biomarkers. This characterization revealed that like most dinoflagellates, the majority of sterols was present as free sterols. Furthermore, the profile of free sterols was found to resemble those of photosynthetic dinoflagellates, with the dominant compound being the previously reported dinoflagellate sterol, dinosterol. A number of other 4α‐methyl‐substituted sterols and steroidal ketones common to other dinoflagellates were also identified. No strong candidate(s) for a unique sterol biomarker was present.  相似文献   

19.
We report the characterization of six new microsatellite loci for the toxic marine dinoflagellate Alexandrium tamarense (North American ribotype), using 56 isolates from a range of locations. The numbers of alleles per locus ranged from five to nine and gene diversities ranged from 0.041 to 0.722. We tested primers for these six loci on other A. tamarense ribotypes and on other Alexandrium species; the results suggest that the primers are specific to A. tamarense isolates belonging to the North American ribotype.  相似文献   

20.
To infer the phylogeny of both the host and the endosymbiont of Peridinium quinquecorne Abé, the small subunit (SSU) ribosomal DNA (rDNA) from the host and two genes of endosymbiont origin (plastid‐encoded rbcL and nuclear‐encoded SSU rDNA) were determined. The phylogenetic analysis of the host revealed that the marine dinoflagellate P. quinquecorne formed a clade with other diatom‐harbouring dinoflagellates, including Kryptoperidinium foliaceum (Stein) Lindeman, Durinskia baltica (Levander) Carty et Cox and Galeidinium rugatum Tamura et Horiguchi, indicating a single endosymbiotic event for this lineage. Phylogenetic analyses of the endosymbiont in these organisms revealed that the endosymbiont of P. quinquecorne formed a clade with a centric diatom (SSU data indicated it to be closely related to Chaetoceros), whereas the endosymbionts of other three dinoflagellates formed a clade with a pennate diatom. The discrepancy between the host and the endosymbiont phylogenies suggests a secondary replacement of the endosymbiont from a pennate to a centric diatom in P. quinquecorne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号