首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The inherent complexity of aging‐related traits can temper progress in unraveling the genetic origins of healthspan. We focus on two generations in the Framingham Heart Study, the original (FHS) and offspring (FHSO) cohorts, to determine whether aging‐related processes in changing environments can substantially impact the role of lipid‐related genes discovered in candidate gene (the apolipoprotein E (APOE) e2/3/4 polymorphism) and genome‐wide (the APOB rs1042034 (C/T)) studies, in regulation of total cholesterol (TC) and onset of cardiovascular disease (CVD). We demonstrate that the APOE e4 allele and APOB CC genotype can play detrimental, neutral, and protective sex‐specific roles in the etiology of CVD at different ages and in different environments. We document antagonistic roles for the e4 allele in the onset of CVD characterized by detrimental effects at younger ages (RR≤ 75 years = 1.49, P = 7.5 × 10?4) and protective effects at older ages (RR76+years = 0.77, P = 0.044) for FHS participants. We found that disregarding the role of aging erroneously nullifies the significant effects of the e4 allele in this sample (RR = 0.92, P = 0.387). The leading biogenetic pathways mediating genetic effects on CVD may be more relevant to lipid metabolism for APOB than APOE. Aging‐related processes can modulate the strength of genetic associations with TC in the same individuals at different chronological ages. We found substantial differences in the effects of the same APOE and APOB alleles on CVD and TC across generations. The results suggest that aging‐related processes in changing environments may play key roles in the genetics of healthspan. Detailed systemic integrative analyses may substantially advance the progress.  相似文献   

2.
Alavez S  Lithgow GJ 《Aging cell》2012,11(2):187-191
Over the last 10 years, various screens of small molecules have been conducted to find long sought interventions in aging. Most of these studies were performed in invertebrates but the demonstration of pharmacological lifespan extension in the mouse has created considerable excitement. Since aging is a common risk factor for several chronic diseases, there is a reasonable expectation that some compounds capable of extending lifespan will be useful for preventing a range of age‐related diseases. One of the potential targets is protein aggregation which is associated with several age‐related diseases. Genetic studies have long indicated that protein homeostasis is a critical component of longevity but recently a series of chemicals have been identified in the nematode Caenorhabditis elegans that lead to the maintenance of the homeostatic network and extend lifespan. Herein we review these interventions in C. elegans and consider the potential of improving health by enhancing protein homeostasis.  相似文献   

3.
Evolutionary responses to selection can be complicated when there is substantial nonadditivity, which limits our ability to extrapolate from simple models of selection to population differentiation and speciation. Studies of Drosophila melanogaster indicate that lifespan and the rate of senescence are influenced by many genes that have environment- and sex-specific effects. These studies also demonstrate that interactions among alleles (dominance) and loci (epistasis) are common, with the degree of interaction differing between the sexes and among environments. However, little is known about the genetic architecture of lifespan or mortality rates for organisms other than D. melanogaster. We studied genetic architecture of differences in lifespan and shapes of mortality curves between two populations of the seed beetle, Callosobruchus maculatus (South India and Burkina Faso populations). These two populations differ in various traits (such as body size and adult lifespan) that have likely evolved via host-specific selection. We found that the genetic architecture of lifespan differences between populations differs substantially between males and females; there was a large maternal effect on male lifespan (but not on female lifespan), and substantial dominance of long-life alleles in females (but not males). The large maternal effect in males was genetically based (there was no significant cytoplasmic effect) likely due to population differences in maternal effects genes that influence lifespan of progeny. Rearing host did not affect the genetic architecture of lifespan, and there was no evidence that genes on the Y-chromosome influence the population differences in lifespan. Epistatic interactions among loci were detectable for the mortality rate of both males and females, but were detectable for lifespan only after controlling for body size variation among lines. The detection of epistasis, dominance, and sex-specific genetic effects on C. maculatus lifespan is consistent with results from line cross and quantitative trait locus studies of D. melanogaster.  相似文献   

4.
Environmental manipulations have consistently demonstrated a cost of reproduction in the capital-breeding seed beetle, Callosobruchus maculatus, as females deprived of seeds or mates lay fewer eggs and thereby increase their longevity. Yet fecundity and longevity tend to be positively correlated within populations, perhaps as a consequence of individual differences in resource acquisition. We conducted a split-brood experiment that combined a manipulation of seed availability (seeds present or absent) with a quantitative-genetic analysis of fecundity and lifespan in each environment. Each trait was significantly heritable in each environment. Seed availability not only altered mean fecundity and longevity between environments, but also modified how the traits were correlated within environments. The signs of both the phenotypic and genetic correlations switched from positive when seeds were present to negative when seeds were absent. This reversal persisted even after the effect of body mass (a potential indicator of resource acquisition) was statistically controlled. Cross-environment genetic correlations were positive but significantly less than one for each trait. We suggest that the reversal of the fecundity-longevity relationship depends on a shift in the relative importance of resource-acquisition and resource-allocation loci between environments. In particular, a cost of reproduction may be apparent at the individual level only when seeds are scarce or absent because differences in reproductive effort become large enough to overwhelm differences in resource acquisition. Despite their common dependence on resources acquired during larval stages, fecundity and lifespan in C. maculatus do not appear to be tightly coupled in a physiological or genetic sense.  相似文献   

5.
Human apolipoprotein (apo) E is polymorphic. We have investigated the effect of the apo-E polymorphism on quantitative plasma levels of apo E, apo B, and total cholesterol in a sample of 563 blood-bank donors from Marburg and Giessen, West Germany. The relative frequencies of the epsilon 2, epsilon 3, and epsilon 4 alleles are .063, .793, and .144, respectively. The average effects of the epsilon 2 allele are to raise apo-E levels by 0.95 mg/dl, lower apo B levels by 9.46 mg/dl, and lower total cholesterol levels by 14.2 mg/dl. The average effects of the epsilon 4 allele are to lower apo-E levels by 0.19 mg/dl, to raise apo-B levels by 4.92 mg/dl, and to raise total cholesterol levels by 7.09 mg/dl. The average effects of the epsilon 3 allele are near zero for all three phenotypes. The apo-E polymorphism accounts for 20% of the variability of plasma apo-E levels, 12% of the variability of plasma apo-B levels, and 4% of the variability of total plasma cholesterol levels. The inverse relationship between the genotype-specific average apo-E levels and both the genotype-specific average apo-B and cholesterol levels is offset by a positive relationship between apo-E levels and both apo-B and cholesterol levels within an apo-E genotype. The apo-E polymorphism also has a direct effect on the correlation between apo-E and total cholesterol levels. The implication of these results on multivariate genetic analyses of these phenotypes is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The Sgs1 protein from Saccharomyces cerevisiae is a member of the RecQ helicases. Defects in RecQ helicases result in premature aging phenotypes in both yeasts and humans, which appear to be promoted by replicative stress. Yeast rad27 mutants also suffer from premature aging. As the human Rad27p and Sgs1p homologs interact, a similar interaction between the yeast proteins could be important for promoting longevity in S. cerevisiae. We tested the contribution of a potential interaction between Rad27p and Sgs1p to longevity by analyzing lifespan and parameters associated with longevity in rad27 and sgs1 mutants. The carbon source supporting growth also modulated longevity as evaluated by replicative and chronological lifespan measurements. Growth on glycerol promoted chronological lifespan, while maximum replicative lifespan was obtained with glucose-supported growth. In comparison to the individual mutants, the sgs1 rad27 double mutant displayed a shortened replicative lifespan and was also more sensitive to DNA-damaging agents. In addition to promoting replicative lifespan, the activity of Rad27p was critical for achieving full chronological lifespan. The rad27 mutants exhibited increased oxidative stress levels along with an elevated spontaneous mutation rate. Removal of Sgs1p activity additionally increased the oxidative stress and spontaneous mutation rate in rad27 mutants without affecting the chronological lifespan.  相似文献   

8.
In organisms with a soma-germ demarcation, the germline must be 'preserved' such that harmful damage is not transmitted to the offspring. Keeping the progeny free of damage may be achieved by gametes enjoying elevated, and/or more functional, homeostatic maintenance systems. This possibility was approached here by testing whether the soma and maturating oocytes (eggs) dissected from female Drosophila melanogaster in reproductive ages display differential capacities for protein quality control and whether these capacities change during aging and mating. Eggs exhibited a high capacity to prevent protein aggregation, strong capacity for 26S proteasome-dependent degradation and reduced levels of oxidatively damaged (carbonylated) proteins compared to the soma. The capacity to prevent protein aggregation was not affected in either soma or eggs by age and/or mating, while the 26S proteasome capacity declined in the soma but was maintained in the eggs of aged females. However, the levels of carbonylated proteins increased with age in both soma and eggs, and this increase was more pronounced in females allowed to mate continuously. Furthermore, the levels of carbonylated proteins in the eggs of mated flies correlated negatively with the propensity of the eggs to develop into an adult fly. In young flies, mating caused a decrease in 26S proteasome capacity and an increase in protein carbonylation in the soma, but not in the eggs. These results are in line with trade-off theories of aging where aging is considered a consequence of investment in reproduction over somatic maintenance.  相似文献   

9.
To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulin-like growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months ( R  = −0.33, P  = 0.01). This correlation became stronger if the short-lived strains with a median lifespan < 600 days were removed from the analysis ( R  = −0.53, P  < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.  相似文献   

10.
An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple‐sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well‐adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade‐offs in plant breeding when numerous traits are important and to be cautious about the use of non‐adapted germplasm.  相似文献   

11.
In the wing dimorphic sand cricket, Gryllus firmus, there is a pronounced trade-off between flight capability and fecundity. This trade-off is found both between morphs and within the macropterous morph, in which fecundity is negatively correlated with the mass of the principle flight muscles, the dorso-longitudinal muscles (DLM). In this paper, we examine how this trade-off is affected by a reduction in food and its genetic basis. We find that the relative fitness of the two wing morphs is not changed although both fecundity and DLM mass are decreased. A quantitative genetic analysis shows that the trade-off function is genetically variable but that most of the variation occurs in the intercept rather than the slope of the function. Analysis further indicates a very high genetic correlation between environments (food ration) supporting the hypothesis of a strong functional constraint between reproduction and flight capability.  相似文献   

12.
13.
14.
The evolution of floral display is thought to be constrained by trade‐offs between the size and number of flowers and inflorescences. We grew in the glasshouse 60 maternal families from each of two Brazilian populations of the annual herb, Eichhornia paniculata. We measured flower size, daily flower number, and total flower number per inflorescence, and two indices of module size, leaf area and age at flowering. We also assessed the size and number of inflorescences produced over 6 weeks. All floral traits exhibited significant heritable variation, some of which was due to genetic variation in module size. Genetic (maternal family) correlations between daily and total flower number did not differ from 1.0, indicating that display size (daily flower number) cannot evolve independently from total flower number per inflorescence. Genetic correlations between flower size and daily flower number ranged from negative to positive (r=–0.78 to +0.84), depending on population and inflorescence. Positive correlations occurred when variation in investment per inflorescence was high so that some families produced both larger and more flowers. These correlations became zero when we controlled for variation in module size. Families that flowered later produced fewer, larger inflorescences (r=–0.33, –0.85). These data support theoretical predictions regarding the combined effects of variation in resource acquisition and allocation on traits involved in trade‐offs, and they emphasize the hierarchical organization of floral displays. Our results imply that patterns of resource allocation among inflorescences influence evolutionary changes in flower size and number per inflorescence.  相似文献   

15.
Values of M and M/K extracted from simulated uni-modal length-frequency data representing 28 fish stocks were biased. The bias exceeded 20% when the life span of the stock was <5 or >15 years.  相似文献   

16.
During aging, the thymus undergoes a marked involution that is responsible for profound changes in the T‐cell compartment. To investigate the capacity of the thymus to produce new cells at the limit of human lifespan, we analyzed some basic mechanisms responsible for the renewal and maintenance of peripheral T lymphocytes in 44 centenarians. Thymic functionality was analyzed by the quantification of cells presenting the T‐cell receptor rearrangement excision circles (TREC). A new method based upon real‐time PCR was used, and we found that most centenarians (84%) had undetectable levels of TREC+ cells. Six‐color cytofluorimetric analysis revealed that centenarians had an extremely low number of naïve T cells; central memory and effector memory T cells were greatly increased, while terminally differentiated cells were as numerous as in young (aged 20–45) or middle‐aged (aged 58–62) donors. Interleukin (IL)‐7 and IL‐7 receptor α‐chain (CD127) levels were the same at all ages, as shown by ELISA, flow cytometry and real‐time PCR. However, IL‐7 plasma levels were higher in centenarian females than males. The presence of TREC+ cells and of very few naïve T lymphocytes suggests that in centenarians such cells could either derive from residues of thymic lymphopoietic islets, or even represent long‐living lymphocytes that have not yet encountered their antigen. IL‐7 could be one of the components responsible, among others, for the higher probability of reaching extreme ages typical of females.  相似文献   

17.
Prospective studies have demonstrated that an imbalance between oxidative damage and antioxidative protection can play a role in the development and progression of atherosclerosis. Also, genotypes with the apolipoprotein E ζ4 allele have been associated with an increase risk for this pathology. Based on this knowledge, the aim of this study was to evaluate indicators of the redox balance, trace elements, and apolipoprotein E allelic profile in subjects from the Lisbon population with clinically stable atherosclerosis, at risk for atherosclerotic events, and in healthy subjects for comparison. The activities of superoxide dismutase in erythrocytes and glutathione peroxidase in whole blood, plasma total thiols, and serum ceruloplasmin were kept unchanged among the three groups. Serum α-tocopherol was increased in atherosclerotic patients. Total malondialdehyde in serum and protein carbonyls in plasma, which are indicators of lipid and protein oxidative damage, respectively, reached their highest values in risk subjects. The concentrations of potassium and calcium, in plasma and in blood cells, were slightly elevated in patients and might reflect an electrolytic imbalance. Regarding the apolipoprotein E polymorphism, atherosclerotic patients had an increased incidence of the high-risk genotypes for atherogenesis (ζ3/ζ4 and ζ4/ζ4). A multivariate model applied to the general population using most of the parameters clearly separated the three groups at study (i.e., the healthy group from the steady-state group of risk disease and from the atherosclerotic one). As shown by us, the usefulness of biochemical and complementary genetic markers is warranted for a better knowledge on atherosclerosis molecular basis.  相似文献   

18.
19.
When exposed to parasites, hosts often mount energetically expensive immune responses, and this may alter resource allocation between competing life history traits including other components of the immune system. Here, we investigated whether a humoral immune challenge towards a vaccine reduces or enhances the cutaneous immune responses towards an injection of lipopolysaccharid (LPS, innate immunity) and phytohaemagglutinin (PHA, T‐cell immunity) in nestling tawny owls in interaction with the degree of plumage melanin‐based coloration. The humoral immune challenge enhanced the response to LPS similarly in differently coloured nestlings. In contrast, the same humoral immune challenge enhanced immune response to PHA in dark reddish melanic nestlings while reducing it in pale reddish melanic nestlings. Our results highlight that both antagonistic and synergistic interactions can take place among branches of immune system, and that the sign and magnitude of these interactions can vary with immune responses involved and the degree of melanin‐based coloration.  相似文献   

20.
Adult lifespans, age‐specific survival, age‐specific mortality, survival times on paraquat, and survival times on DDT were assayed in seven lines of Drosophila melanogaster, including two genetically heterogeneous wild lines recently collected from nature, and three inbred and recombinant inbred lines derived from an artificial selection experiment for increased lifespan. Survival on paraquat is positively correlated with adult lifespan. DDT resistance is uncorrelated with either paraquat resistance or lifespan. The wild lines are unexceptional with respect to average lifespan, paraquat resistance, age‐specific survivorship, and leveling off of mortality rates at advanced ages, but have high levels of DDT resistance. Cluster analysis groups the wild lines with three unselected laboratory stocks in one cluster, while two long‐lived elite recombinant inbred lines form a second cluster. Long‐lived laboratory‐adapted lines are quantitatively differentiated from the wild stocks, both with respect to average adult lifespans and resistance to an oxidizing agent. We reject the ‘recovery’ hypothesis, which proposes that Drosophila artificially selected for long life have phenotypes that merely recover the wild state. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号