首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.  相似文献   

3.
4.
Short interfering RNAs (siRNAs) guide mRNA cleavage during RNA interference (RNAi). Only one siRNA strand assembles into the RNA-induced silencing complex (RISC), with preference given to the strand whose 5' terminus has lower base-pairing stability. In Drosophila, Dcr-2/R2D2 processes siRNAs from longer double-stranded RNAs (dsRNAs) and also nucleates RISC assembly, suggesting that nascent siRNAs could remain bound to Dcr-2/R2D2. In vitro, Dcr-2/R2D2 senses base-pairing asymmetry of synthetic siRNAs and dictates strand selection by asymmetric binding to the duplex ends. During dsRNA processing, Dicer (Dcr) liberates siRNAs from dsRNA ends in a manner dictated by asymmetric enzyme-substrate interactions. Because Dcr-2/R2D2 is unlikely to sense base-pairing asymmetry of an siRNA that is embedded within a precursor, it is not clear whether processed siRNAs strictly follow the thermodynamic asymmetry rules or whether processing polarity can affect strand selection. We use a Drosophila in vitro system in which defined siRNAs with known asymmetry can be generated from longer dsRNA precursors. These dsRNAs permit processing specifically from either the 5' or the 3' end of the thermodynamically favored strand of the incipient siRNA. Combined dsRNA-processing/mRNA-cleavage assays indicate that siRNA strand selection is independent of dsRNA processing polarity during Drosophila RISC assembly in vitro.  相似文献   

5.
6.
The Drosophila RNase III enzyme Dicer-2 processes double-stranded RNA (dsRNA) precursors into small interfering RNAs (siRNAs). It also interacts with the siRNA product and R2D2 protein to facilitate the assembly of an RNA-induced silencing complex (RISC) that mediates RNA interference. Here, we characterized six independent missense mutations in the dicer-2 gene. Four mutations (P8S, L188F, R269W, and P365L) in the DExH helicase domain reduced dsRNA processing activity. Two mutations were located within an RNase III domain. P1496L caused a loss of dsRNA processing activity comparable to a null dicer-2 mutation. A1453T strongly reduced both dsRNA processing and RISC activity, and decreased the levels of Dicer-2 and R2D2 proteins, suggesting that this mutation destabilizes Dicer-2. We also found that the carboxyl-terminal region of R2D2 is essential for Dicer-2 binding. These results provide further insight into the structure-function relationship of Dicer, which plays a critical role in the siRNA pathway.  相似文献   

7.
Dicers at RISC; the mechanism of RNAi   总被引:29,自引:0,他引:29  
Tijsterman M  Plasterk RH 《Cell》2004,117(1):1-3
The pathway of RNA interference starts when Dicer cuts dsRNA into small interfering RNAs (siRNAs) that subsequently target homologous mRNAs for destruction. microRNA processing from stem loop precursors similarly requires Dicer activity. Two papers in this issue of Cell now demonstrate that Dicer is also essential for the execution phase of RNAi and explore the distinct requirements for Dicers in the siRNA and miRNA pathways.  相似文献   

8.
9.
One of the most exciting recent developments in RNA biology has been the discovery of small non-coding RNAs that affect gene expression through the RNA interference (RNAi) mechanism. Two major classes of RNAs involved in RNAi are small interfering RNA (siRNA) and microRNA (miRNA). Dicer, an RNase III enzyme, plays a central role in the RNAi pathway by cleaving precursors of both of these classes of RNAs to form mature siRNAs and miRNAs, which are then loaded into the RNA-induced silencing complex (RISC). miRNA and siRNA precursors are quite structurally distinct; miRNA precursors are short, imperfect hairpins while siRNA precursors are long, perfect duplexes. Nonetheless, Dicer is able to process both. Dicer, like the majority of RNase III enzymes, contains a dsRNA binding domain (dsRBD), but the data are sparse on the exact role this domain plays in the mechanism of Dicer binding and cleavage. To further explore the role of human Dicer-dsRBD in the RNAi pathway, we determined its binding affinity to various RNAs modeling both miRNA and siRNA precursors. Our study shows that Dicer-dsRBD is an avid binder of dsRNA, but its binding is only minimally influenced by a single-stranded – double-stranded junction caused by large terminal loops observed in miRNA precursors. Thus, the Dicer-dsRBD contributes directly to substrate binding but not to the mechanism of differentiating between pre-miRNA and pre-siRNA. In addition, NMR spin relaxation and MD simulations provide an overview of the role that dynamics contribute to the binding mechanism. We compare this current study with our previous studies of the dsRBDs from Drosha and DGCR8 to give a dynamic profile of dsRBDs in their apo-state and a mechanistic view of dsRNA binding by dsRBDs in general.  相似文献   

10.
In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.  相似文献   

11.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.  相似文献   

12.
The inside-out mechanism of Dicers from budding yeasts   总被引:1,自引:0,他引:1  
Weinberg DE  Nakanishi K  Patel DJ  Bartel DP 《Cell》2011,146(2):262-276
The Dicer ribonuclease III (RNase III) enzymes process long double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that direct RNA interference. Here, we describe the structure and activity of a catalytically active fragment of Kluyveromyces polysporus Dcr1, which represents the noncanonical Dicers found in budding yeasts. The crystal structure revealed a homodimer resembling that of bacterial RNase III but extended by a unique N-terminal domain, and it identified additional catalytic residues conserved throughout eukaryotic RNase III enzymes. Biochemical analyses showed that Dcr1 dimers bind cooperatively along the dsRNA substrate such that the distance between consecutive active sites determines the length of the siRNA products. Thus, unlike canonical Dicers, which successively remove siRNA duplexes from the dsRNA termini, budding-yeast Dicers initiate processing in the interior and work outward. The distinct mechanism of budding-yeast Dicers establishes a paradigm for natural molecular rulers and imparts substrate preferences with ramifications for biological function.  相似文献   

13.
RNA interference (RNAi) is a phenomenon of gene silence induced by a double-stranded RNA (dsRNA) homologous to a target gene.RNAi can be used to identify the function of genes or to knock down the targeted genes.In RNAi technology,19 bp double-stranded short interfering RNAs (siRNA) with characteristic 3' overhangs are usually used.The effects of siRNAs are quite varied due to the different choices in the sites of target mRNA.Moreover,there are many factors influencing siRNA activity and these factors are usually nonlinear.To find the motif features and the effect on siRNA activity,we carried out a feature extraction on some published experimental data and used these features to train a backpropagation neural network (BP NN).Then,we used the trained BP NN to predict siRNA activity.  相似文献   

14.
In humans a single species of the RNAseIII enzyme Dicer processes both microRNA precursors into miRNAs and long double-stranded RNAs into small interfering RNAs (siRNAs). An interesting but poorly understood domain of the mammalian Dicer protein is the N-terminal helicase-like domain that possesses a signature DExH motif. Cummins et al. created a human Dicer mutant cell line by inserting an AAV targeting cassette into the helicase domain of both Dicer alleles in HCT116 cells generating an in-frame 43-amino-acid insertion immediately adjacent to the DExH box. This insertion creates a Dicer mutant protein with defects in the processing of most, but not all, endogenous pre-miRNAs into mature miRNA. Using both biochemical and computational approaches, we provide evidence that the Dicer helicase mutant is sensitive to the thermodynamic properties of the stems in microRNAs and short-hairpin RNAs, with thermodynamically unstable stems resulting in poor processing and a reduction in the levels of functional mi/siRNAs. Paradoxically, this mutant exhibits enhanced processing efficiency and concomitant RNA interference when thermodynamically stable, long-hairpin RNAs are used. These results suggest an important function for the Dicer helicase domain in the processing of thermodynamically unstable hairpin structures.  相似文献   

15.
DEXD/H-box protein UAP56 is an essential pre-mRNA splicing factor required for the first ATP-dependent spliceosome assembly step. UAP56 is also essential for the export of the majority of mRNAs from the nucleus to the cytoplasm. We performed biochemical characterization of UAP56's ATPase and helicase activity, which is important for further understanding the role of these activities in UAP56's function. We showed that UAP56 is an RNA-stimulated ATPase that can only hydrolyze ATP. We demonstrated that UAP56 is an ATP-dependent RNA helicase that can unwind substrates with 5' or 3' overhangs or blunt ends in vitro. We showed that U2AF(65) and Aly, two proteins known to interact with UAP56, do not influence UAP56's ATPase or helicase activity. We also demonstrated that several mutants in the conserved helicase motifs I, II, and III abolish UAP56's ATPase and/or helicase activity, providing tools for future investigation of the role of UAP56's ATPase and helicase activity in spliceosome assembly and mRNA export.  相似文献   

16.
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.  相似文献   

17.
Lee YS  Nakahara K  Pham JW  Kim K  He Z  Sontheimer EJ  Carthew RW 《Cell》2004,117(1):69-81
The RNase III enzyme Dicer processes RNA into siRNAs and miRNAs, which direct a RNA-induced silencing complex (RISC) to cleave mRNA or block its translation (RNAi). We have characterized mutations in the Drosophila dicer-1 and dicer-2 genes. Mutation in dicer-1 blocks processing of miRNA precursors, whereas dicer-2 mutants are defective for processing siRNA precursors. It has been recently found that Drosophila Dicer-1 and Dicer-2 are also components of siRNA-dependent RISC (siRISC). We find that Dicer-1 and Dicer-2 are required for siRNA-directed mRNA cleavage, though the RNase III activity of Dicer-2 is not required. Dicer-1 and Dicer-2 facilitate distinct steps in the assembly of siRISC. However, Dicer-1 but not Dicer-2 is essential for miRISC-directed translation repression. Thus, siRISCs and miRISCs are different with respect to Dicers in Drosophila.  相似文献   

18.
It has been shown that siRNAs can compete with each other or with endogenous miRNAs for RISC components. This competition may complicate the interpretations of phenotypes observed through siRNA-mediated knockdown of genes, especially those genes implicated in the RISC pathway. In this study, we re-examined the function of RNA helicase A (RHA), which has been previously proposed to function in RISC loading based on siRNA-mediated knockdown studies. Here we show that reduced RISC activity or loading of siRNAs was observed only in cells depleted of RHA using siRNA, but not using RNaseH-dependent antisense oligonucleotides (ASOs), suggesting that the impaired RISC function stems from the competition between pre-existing and newly transfected siRNAs, but not from reduction of the RHA protein. This view is further supported by the findings that cells depleted of a control protein, NCL1, using siRNA, but not ASO, exhibited similar defects on the loading and activity of a subsequently transfected siRNA. Transfection of RHA or NCL1 siRNAs, but not ASOs, reduced the levels of endogenous miRNAs, suggesting a competition mechanism. As a positive control, we showed that reduction of MOV10 by either siRNA or ASO decreased siRNA activity, confirming its role in RISC function. Together, our results indicate that RHA is not required for RISC activity or loading, and suggest that proper controls are required when using siRNAs to functionalize genes to avoid competition effects.  相似文献   

19.
The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3’ overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.  相似文献   

20.
The first evidence for gene disruption by double-stranded RNA (dsRNA) came from careful analysis in Caenorhabditis elegans. This phenomenon, called RNA interference (RNAi), was observed subsequently in various organisms, including plants, nematodes, Drosophila, and protozoans. Very recently, it has been reported that in mammalian cells, 21- or 22-nucleotide (nt) RNAs with 2-nt 3' overhangs (small inhibitory RNAs, siRNAs) exhibit an RNAi effect. This is because siRNAs are not recognized by the well-characterized host defense system against viral infections, involving dsRNA-dependent inhibition of protein synthesis. However, the current method for introducing synthetic siRNA into cells by lipofection restricts the range of applications of RNAi as a result of the low transfection efficiencies in some cell types and/or short-term persistence of silencing effects. Here, we report a vector-based siRNA expression system that can induce RNAi in mammalian cells. This technical advance for silencing gene expression not only facilitates a wide range of functional analysis of mammalian genes but might also allow therapeutic applications by means of vector-mediated RNAi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号