首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspartate aminotransferase (EC 2.6.1.1) was purified to homogeneity from cell extracts of a newly isolated thermophilic bacterium, Bacillus sp. strain YM-2. The enzyme consisted of two subunits identical in molecular weight (Mr, 42,000) and showed microheterogeneity, giving two bands with pIs of 4.1 and 4.5 upon isoelectric focusing. The enzyme contained 1 mol of pyridoxal 5'-phosphate per mol of subunit and exhibited maxima at about 360 and 415 nm in absorption and circular dichroism spectra. The intensities of the two bands were dependent on the buffer pH; at neutral or slightly alkaline pH, where the enzyme showed its maximum activity, the absorption peak at 360 nm was prominent. The enzyme was specific for L-aspartate and L-cysteine sulfinate as amino donors and alpha-ketoglutarate as an amino acceptor; the KmS were determined to be 3.0 mM for L-aspartate and 2.6 mM for alpha-ketoglutarate. The enzyme was most active at 70 degrees C and had a higher thermostability than the enzyme from Escherichia coli. The N-terminal amino acid sequence (24 residues) did not show any similarity with the sequences of mammalian and E. coli enzymes, but several residues were identical with those of the thermoacidophilic archaebacterial enzyme recently reported.  相似文献   

2.
We found that a psychrophilic bacterium isolated from Antarctic seawater, Cytophaga sp. KUC-1, abundantly produces aspartase [EC4.3.1.1], and the enzyme was purified to homogeneity. The molecular weight of the enzyme was estimated to be 192,000, and that of the subunit was determined to be 51,000: the enzyme is a homotetramer. L-Aspartate was the exclusive substrate. The optimum pH in the absence and presence of magnesium ions was determined to be pH 7.5 and 8.5, respectively. The enzyme was activated cooperatively by the presence of L-aspartate and by magnesium ions at neutral and alkaline pHs. In the deamination reaction, the K(m) value for L-aspartate was 1.09 mM at pH 7.0, and the S(1/2) value was 2.13 mM at pH 8.5. The V(max) value were 99.2 U/mg at pH 7.0 and 326 U/mg at pH 8.5. In the amination reaction, the K(m) values for fumarate and ammonium were 0.797 and 25.2 mM, respectively, and V(max) was 604 U/mg. The optimum temperature of the enzyme was 55 degrees C. The enzyme showed higher pH and thermal stabilities than that from mesophile: the enzyme was stable in the pH range of 4.5-10.5, and about 80% of its activity remained after incubation at 50 degrees C for 60 min. The gene encoding the enzyme was cloned into Escherichia coli, and its nucleotides were sequenced. The gene consisted of an open reading frame of 1,410-bp encoding a protein of 469 amino acid residues. The amino acid sequence of the enzyme showed a high degree of identity to those of other aspartases, although these enzymes show different thermostabilities.  相似文献   

3.
An enzyme which catalyzes the transamination of 4-aminobutyrate with 2-oxoglutarate was purified 588-fold to homogeneity from Candida guilliermondii var. membranaefaciens, grown with 4-aminobutyrate as sole source of nitrogen. An apparent relative molecular mass of 107,000 was estimated by gel filtration. The enzyme was found to be a dimer made up of two subunits identical in molecular mass (Mr 55,000). The enzyme has a maximum activity in the pH range 7.8-8.0 and a temperature optimum of 45 degrees C. 2-Oxoglutarate protects the enzyme from heat inactivation better than pyridoxal 5'-phosphate. The absorption spectrum of the enzyme exhibits two maxima at 412 nm and 330 nm. The purified enzyme catalyzes the transamination of omega-amino acids; 4-aminobutyrate is the best amino donor and low activity is observed with beta-alanine. The Michaelis constants are 1.5 mM for 2-oxoglutarate and 2.3 mM for 4-aminobutyrate. Several amino acids, such as alpha,beta-alanine and 2-aminobutyrate, are inhibitors (Ki = 38.7 mM, Ki = 35.5 mM and Ki = 33.2 mM respectively). Propionic and butyric acids are also inhibitors (Ki = 3 mM and Ki = 2 mM).  相似文献   

4.
Aspartate aminotransferase (AspAT) was purified to homogeneity from cell extracts of the non-N2-fixing cyanobacterium Phormidium lapideum. The NH2-terminal sequence of 25 amino acid residues was different from the sequences of the subfamily Ialpha of AspATs from eukaryotes and Escherichia coli, but it was similar to sequences of the subfamily Igamma of AspATs from archaebacteria and eubacteria. The enzyme was most active at 80 degrees C and was stable at up to 75 degrees C. Thermal inactivation (60-85 degrees C) of the enzyme followed first-order kinetics, with 2-oxoglutarate causing a shift of the thermal inactivation curves to higher temperatures. However, at 25 degrees C the kcat of P. lapideum AspAT was nearly equal to the values of AspATs from mesophilic organisms. The enzyme used L-aspartate and L-cysteine sulfinate as amino donors and 2-oxoglutarate as an amino acceptor. The Km values were 5.0 mM for L-aspartate, 5.7 mM for L-glutamate, 0.2 mM for 2-oxoglutarate, and 0.032 mM for oxaloacetate.  相似文献   

5.
A new enzyme which catalyzes the transamination of L-norleucine (2-aminohexanoic acid) and L-leucine with 2-oxoglutarate was purified to homogeneity from cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 100,000. The transaminase behaved as a dimer which consists of two subunits identical in molecular mass (Mr 51,000). The enzyme has a maximum activity in the pH range of 8.0-8.5 and at 55 degrees C. 2-Oxoglutarate, and to a lesser extent pyridoxal 5'-phosphate, were effective protecting agents against increasing temperature. The enzyme exhibits absorption maximum at 330 nm and 410 nm. L-Norleucine, and L-leucine to a lesser extent, are the best amino donors with 2-oxoglutarate as amino acceptor. The Km values for L-norleucine, L-leucine and 2-oxoglutarate determined from the Lineweaver-Burk plot were 1.8 mM, 6.6 mM and 2.0 mM respectively. A ping-pong bi-bi mechanism of inhibition with alternative substrates is found when the enzyme is in the presence of both L-norleucine and L-leucine. The inhibitory effect of various amino acid analogs on the transamination reaction between L-norleucine and 2-oxoglutarate was studied and Ki values were determined.  相似文献   

6.
An enzyme which catalyzes the transamination of L-aspartate with 2-oxoglutarate has been purified 400-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. An apparent relative molecular mass of 138,000 was estimated by gel filtration. The enzyme is a dimer consisting of two identical subunits of Mr 65,000 each as deduced from PAGE/SDS studies. A stoichiometry of two molecules pyridoxal 5-phosphate/enzyme molecule was calculated. The enzyme has an isoelectric point of 8.48 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-aspartate. L-Aspartate or pyridoxal 5-phosphate, but not 2-oxoglutarate, protected the enzyme from heat inactivation. The purified enzyme was able to transaminate, although to a low extent, L-phenylalanine and L-tyrosine with 2-oxoglutarate, and L-serine, L-alanine and L-glutamine with oxaloacetate. L-Aspartate aminotransferase exhibited hyperbolic kinetics for 2-oxoglutarate and oxaloacetate, and nonhyperbolic behaviour for L-aspartate and L-glutamate. Apparent Km values were 0.55 mM for 2-oxoglutarate, 0.044 mM for oxaloacetate, 2.53 mM for L-aspartate and 3.88 mM for L-glutamate. Transamination of L-aspartate in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

7.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

8.
The gene encoding a thermostable pectinase was isolated from a soil metagenome sample. The gene sequence corresponded to an open reading frame of 1,311 bp encoding a translation product of 47.9 kDa. It showed maximum (93 %) identity to a Bacillus licheniformis glycoside hydrolase. Deduced amino acid analysis showed an absence of highly conserved cysteine residues in the N-terminal region at positions 24 and 42, and in the C-terminal region at positions 389, 394, 413 and 424. pQpecJKR01 (pQE30 expression vector containing the pectinase gene) was expressed in Escherichia coli strain M15 as a recombinant fusion protein containing an N-terminal 6× His tag. Biochemical properties of this pectinase were novel. The enzyme had temperature and pH optima of 70 °C and 7.0, respectively, but was active over a broad temperature and pH range. The enzyme was stable at 60 °C with a half-life of 5 h and the enzyme activity was inhibited by 0.1 % diethyl pyrocarbonate and 5 mM dicyclohexyl carbodiimide. The enzyme could be of great use in industrial processes due to its activity over a broad pH range and at high temperature.  相似文献   

9.
An alkaline κ-carrageenase, Cgk-K142, was found in the culture broth of a deep-sea bacterium, Pseudoalteromonas tetraodonis JAM-K142. A gene for the enzyme was cloned and expressed. Purified recombinant Cgk-K142 (rCgk-K142) showed an optimal pH of about 8.8 in glycine-NaOH buffer at 30 °C and of about 8.0 in MOPS buffer at 50 °C. The optimal temperature for the enzyme was 55 °C at pH 8.0. rCgk-K142 was unstable, but λ- and ι-carrageenans, non-degradative substrate homologs, extensively enhanced its stability. The nucleotide sequence of the gene for Cgk-K142 comprised 1,194 bp, and the deduced amino acid sequence (397 amino acids) showed a high level of similarity to the κ-carrageenase of P. carrageenovora, with 94% identity. Another gene for a κ-carrageenase-like protein was found downstream of the gene for Cgk-K142. The nucleotide sequence of that gene consisted of 966 bp (321 amino acids), and it showed the highest similarity, at 64% identity, to protein CgkB of P. carrageenovora, which has been reported as an incomplete 57-amino acid sequence.  相似文献   

10.
Carp muscle-specific creatine kinase M1 isoenzyme (M1-CK) seems to have evolved to adapt to synchronized changes in body temperature and intracellular pH. When gly(268) in rabbit muscle-specific creatine kinase was substituted with asn(268) as found in carp M1-CK, the rabbit muscle-specific CK G286N mutant specific activity at pH 8.0 and 10°C was more than 2-fold higher than that in the wild-type rabbit enzyme. Kinetic studies showed that K(m) values of the rabbit CK G268N mutant were similar to those of the wild-type rabbit enzyme, yet circular dichroism spectra showed that the overall secondary structures of the mutant enzyme, at pH 8.0 and 5°C, were almost identical to the carp M1-CK enzyme. The X-ray diffraction pattern of the mutant enzyme crystal revealed that amino acid residues involved in substrate binding are closer to one another than in the rabbit enzyme, and the cysteine283 active site of the mutant enzyme points away from the ADP binding site. At pH 7.4-8.0 and 35-10°C, with a smaller substrate, dADP, specific activities of the mutant enzyme were consistently higher than the wild-type rabbit enzyme and more similar to the carp M1-CK enzyme. Thus, the smaller active site of the RM-CK G268N mutant may be one of the reasons for its improved activity at low temperature.  相似文献   

11.
N-Acylated homoserine lactone (AHL) lactonases are capable of degrading signal molecules involved in bacterial quorum sensing and therefore represent a new approach to control bacterial infection. Here a gene responsible for the AHL lactonase activity of Bacillus sp. strain AI96, 753 bp in length, was cloned and then expressed in Escherichia coli. The deduced amino acid sequence of Bacillus sp. AI96 AiiA (AiiA(AI96)) is most similar to those of other Bacillus sp. AHL lactonases (~80% sequence identity) and was consequently categorized as a member of the metallo-β-lactamase superfamily. AiiA(AI96) maintains ~100% of its activity at 10°C to 40°C at pH 8.0, and it is very stable at 70°C at pH 8.0 for at least 1 h; no other Bacillus AHL lactonase has been found to be stable under these conditions. AiiA(AI96) resists digestion by proteases and carp intestinal juice, and it has broad-spectrum substrate specificity. The supplementation of AiiA(AI96) into fish feed by oral administration significantly attenuated Aeromonas hydrophila infection in zebrafish. This is the first report of the oral administration of an AHL lactonase for the efficient control of A. hydrophila.  相似文献   

12.
An enzyme which catalyzes the transamination of beta-alanine with alpha-ketoglutarate was purified to homogeneity from Streptomyces griseus IFO 3102 and crystallized. Molecular weight of the enzyme was found to be 185,000 +/- 10,000 by a gel-filtration method. The enzyme consists of four subunits identical in molecular weight (51,000 +/- 1,000). The transaminase is composed of 483 amino acids/subunit containing 7 and 8 residues of half-cystine and methionine, respectively. The enzyme exhibits absorption maxima at 278 and 415 nm. The pyridoxal 5'-phosphate content was determined to be 4 mol/mol of enzyme. The enzyme catalyzes transamination of omega-amino acids including taurine and hypotaurine. beta-Alanine and DL-beta-aminoisobutyrate served as a good amino donor; the Michaelis constants are 8.0 and 12.5 mM, respectively. alpha-Ketoglutarate is the only amino acceptor (Km = 4.0 mM); pyruvate and oxalacetate are inactive. Based on the substrate specificity, the terminology of beta-alanine:alpha-ketoglutarate transaminase is proposed for the enzyme. Carbonyl reagents, HgCl2,DL-gabaculine, and alpha-fluoro-beta-alanine strongly inhibited the enzyme.  相似文献   

13.
A halotolerant isolate Bacillus sp. L1 producing extracellular cellulase was isolated from Yuncheng, China. Production of the enzyme started from mid-exponential phase of bacterial growth and reached a maximum level during the post-stationary phase. The cellulase was purified to homogeneity with molecular mass of 45 kDa. Substrate specificity test indicated that it was an endoglucanase for soluble cellulose. Optimal enzyme activity was found to be at 60 °C, pH 8.0, and 7.5 % NaCl. Furthermore, it was highly active and stable over broad ranges of temperature (30-80 °C), pH (7.0-9.0), and NaCl concentration (2.5-15 %), thus showing its excellent thermostable, alkali-stable, and halotolerant nature. The cellulase activity was greatly inhibited by ethylenediaminetetraacetic acid, indicating that it was a metalloenzyme. Significant inhibition by phenylmethylsulfonyl fluoride and phenylarsine oxide revealed that serine and cysteine residues were essential for the enzyme catalysis. Moreover, the cellulase was highly active in the presence of surfactants, and it showed high stability in the presence of water-insoluble organic solvents with log P (ow)at least 0.88. Results from this study indicate that the purified cellulase from isolate L1 may have considerable potential for industrial application owing to its useful properties.  相似文献   

14.
15.
P A Der Garabedian 《Biochemistry》1986,25(19):5507-5512
A new enzyme that catalyzes the transamination of delta-aminovalerate with alpha-ketoglutarate was purified to homogeneity from adapted cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 118,000. The transaminase behaved as a dimer with two similar subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a maximum activity in the pH range of 7.8-8.5 and at 40 degrees C. alpha-Ketoglutarate and to a lesser extent pyridoxal 5'-phosphate were effective protecting agents toward temperature raising. The enzyme exhibits absorption maximum at 330 and 410 nm. The enzyme catalyzes the transamination between omega-amino acids and alpha-ketoglutarate. delta-Aminovaleric acid is the best amino donor. The Km values for delta-aminovalerate, alpha-ketoglutarate, and pyridoxal 5'-phosphate determined from the Lineweaver-Burk plot were 4.9 mM, 3.6 mM, and 22.7 microM, respectively. The inhibitory effect of various amino acids analogues on the transamination reaction between delta-aminovalerate and alpha-ketoglutarate was studied, and Ki values were determined.  相似文献   

16.
Summary Molecular mechanisms of thermoinactivation of the thermostable -amylase of Bacillus caldovelox were examined. Monomolecular conformational processes were found to be the major causes of thermoinactivation at both pH 4.5 and 8.0. The enzyme possessed considerable additional thermostability at pH 8.0, with half-lives of 0.75 and 7.0 min at 90° C and pH 4.5 and 8.0, respectively. The amino acid composition was examined with respect to the underlying thermostability exhibited by this enzyme. The inherent thermostability exhibited may be due to the high proline content (4.47 mol%), but more likely due to the high content of residues forming hydrophobic bonds (60.89 mol%) allied to a low content of residues responsible for ionic interactions (28.34 mol%). Offprint requests to: C. T. Kelly  相似文献   

17.
We report here the molecular cloning and expression of a hemolytic sphingomyelinase from an aquatic bacterium, Pseudomonas sp. strain TK4. The sphingomyelinase gene was found to consist of 1,548 nucleotides encoding 516 amino acid residues. The recombinant 57.7-kDa enzyme hydrolyzed sphingomyelin but not phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, or phosphatidylethanolamine, indicating that the enzyme is a sphingomyelin-specific sphingomyelinase C. The hydrolysis of sphingomyelin by the enzyme was found to be most efficient at pH 8.0 and activated by Mn(2+). The enzyme shows quite a broad specificity, i.e., it hydrolyzed 4-nitrobenz-2-oxa-1,3-diazole (NBD)-sphingomyelin with short-chain fatty acids and NBD-sphingosylphosphorylcholine, the latter being completely resistant to hydrolysis by any sphingomyelinase reported so far. Significant sequence similarities were found in sphingomyelinases from Bacillus cereus, Staphylococcus aureus, Listeria ivanovii, and Leptospira interrogans, as well as a hypothetical protein encoded in Chromobacterium violaceum, although the first three lacked one-third of the sequence corresponding to that from the C terminus of the TK4 enzyme. Interestingly, the deletion mutant of strain TK4 lacking 186 amino acids at the C-terminal end hydrolyzed sphingomyelin, whereas it lost all hemolytic activity, indicating that the C-terminal region of the TK4 enzyme is indispensable for the hemolytic activity.  相似文献   

18.
Trypanosoma cruzi epimastigotes show gamma-glutamyltranspeptidase activity which has characteristics significantly different than the mammalian enzyme. The protozoan enzyme is localized in the cytosolic fraction, it has a Km of 1.6 mM and a Vmax of 17.4 nmol/min/mg protein with L-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor, and an optimun pH range from 7.5 to 8.0. The best amino acid acceptors were L-histidine, L-asparagine, L-aspartate, L-glutamate and L-proline, but L-glutamine was a very poor acceptor. The enzyme was very sensitive to inhibition by 6-diazo-5-oxo-L-norleucine (k2 = 4.0 X 10(5)/M per min) and O-diazo-acetyl-L-serine (k2 = 1.1 X 10(4)/M per min). Phenobarbital (k2 = 8.38/M per min) and L-serine borate (Ki = 34 mM) were poor inhibitors. The activity of the enzyme was not correlated with the logarithmic phase of growth of the parasites and steadily decreases with the age of the cultures.  相似文献   

19.
Phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of E. coli was inactivated by 2,4,6-trinitrobenzene sulfonate (TNBS), a reagent known to attack amino groups in polypeptides. When the modified enzyme was hydrolyzed with acid, epsilon-trinitrophenyl lysine (TNP-lysine) was identified as a product. Close similarity of the absorption spectrum of the modified enzyme to that of TNP-alpha-acetyl lysine and other observations indicated that most of the amino acid residues modified were lysyl residues. Spectrophotometric determination suggested that five lysyl residues out of 37 residues per subunit were modified concomitant with the complete inactivation of the enzyme. DL-Phospholactate (P-lactate), a potent competitive inhibitor of the enzyme, protected the enzyme from TNBS inactivation. The concentration of P-lactate required for half-maximal protection was 3 mM in the presence of Mg2+ and acetyl-CoA (CoASAc), which is one of the allosteric activators of the enzyme. About 1.3 lysyl residues per subunit were protected from modification by 10 mM P-lactate, indicating that one or two lysyl residues are essential for the catalytic activity and are located at or near the active site. The Km values of the partially inactivated enzyme for PEP and Mg2+ were essentially unchanged, though Vmax was decreased. The partially inactivated enzyme showed no sensitivity to the allosteric activators, i.e., fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP, or to the allosteric inhibitor, i.e., L-aspartate (or L-malate), but retained sensitivities to other activators, i.e., CoASAc and long-chain fatty acids. P-lactate, in the presence of Mg2+ and CoASAc, protected the enzyme from inactivation, but did not protect it from desensitization to Fru-1,6-P2, GTP, and L-aspartate. However, when the modification was carried out in the presence of L-malate, the enzyme was protected from desensitization to L-aspartate (or L-malate), but was not protected from desensitization to Fru-1,6-P2 and GTP. These results indicate that the lysyl residues involved in the catalytic and regulatory functions are different from each other, and that lysyl residues involved in the regulation by L-aspartate (or L-malate) are also different from those involved in the regulation by Fru-1,6-P2 and GTP.  相似文献   

20.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号