首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male‐male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male–male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation.  相似文献   

3.
4.
Trade‐offs between the expression of sexual signals and the maintenance of somatic and germline tissues are expected when these depend upon the same resources. Despite the importance of sperm DNA integrity, its trade‐off with sexual signalling has rarely been explored. We experimentally tested the trade‐off between carotenoid‐based sexual coloration and oxidative DNA damage in skeletal muscle, testis and sperm by manipulating reproductive schedule (early vs. late onset of breeding) in male three‐spined sticklebacks. Oxidative DNA damage was measured as the amount of 8‐hydroxy‐2‐deoxyguanosine in genomic DNA. Irrespective of the experimentally manipulated reproductive schedule, individuals investing more in red coloration showed higher levels of oxidative DNA damage in muscle, testis and sperm during the peak breeding season. Our results show that the expression of red coloration traded off against the level of oxidative DNA damage possibly due to the competing functions of carotenoids as colorants and antioxidants. Thus, female sticklebacks may risk fertility and viability of offspring by choosing redder, more deteriorated partners with decreased sperm DNA integrity. The evolution of sexual signal may be constrained by oxidative DNA damage in the soma and germline.  相似文献   

5.
Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cells just before senescence and after bypassing senescence by inactivation of wild-type p53 function, we conclude that the accrual of five telomeres in G1 that are DDR+ but nonfusogenic is associated with p53-dependent senescence.  相似文献   

6.
Senescence is the deterioration of the phenotype with age caused by negative effects of mutations acting late in life or the physiological deterioration of vital processes. Birds have traditionally been assumed to senescence slowly despite their high metabolic rates, high blood sugar levels and high body temperature. Here we investigate the patterns of age‐related performance of sperm of a long distance migrant, the barn swallow Hirundo rustica, varying in age from 1 to 6 years, analysed by the computer‐assisted sperm analysis equipment. Sperm showed deteriorating performance in terms of linear movement, track velocity, straight line velocity and reduced proportions of rapidly moving, progressive and motile sperm with age. In a second series of experiments, we assessed performance of sperm from the same males in neutral medium and in medium derived from the reproductive tract of females in an attempt to test if sperm of old males performed relatively better in female medium, as expected from extra‐pair paternity being negatively related to male age, but not to female age. Older males showed consistently better performance in female medium than in neutral medium in terms of track velocity, straight line velocity and reduced proportions of rapidly moving, progressive and motile sperm, whereas young males showed better performance in neutral medium. These results provide evidence of declining sperm performance for important reproductive variables not only with age, but also with the sperm of old males performing differentially better in female medium than young males.  相似文献   

7.
Females of internally fertilizing species can significantly extend sperm lifespan and functionality during sperm storage. The mechanisms for such delayed cellular senescence remain unknown. Here, we apply current hypotheses of cellular senescence developed for diploid cells to sperm cells, and empirically test opposing predictions on the relationship between sperm metabolic rate and oxygen radical production in an insect model, the cricket Gryllus bimaculatus. Using time-resolved microfluorimetry, we found a negative correlation between metabolic rate (proportion of protein-bound NAD[P]H) and in situ intracellular oxygen radicals production in freshly ejaculated sperm. In contrast, sperm stored by females for periods of 1 h to 26 days showed a positive correlation between metabolic rate and oxygen radicals production. At the same time, stored sperm showed a 37 per cent reduced metabolic rate, and 42 per cent reduced reactive oxygen species (ROS) production, compared with freshly ejaculated sperm. Rank differences between males in ROS production and metabolic rate observed in ejaculated sperm did not predict rank differences in stored sperm. Our method of simultaneously measuring ROS production and metabolic rate of the same sample has the advantage of providing data that are independent of sperm density and any extracellular antioxidants that are proteins. Our method also excludes effects owing to accumulated hydrogen peroxide. Our results unify aspects of competing theories of cellular ageing and suggest that reducing metabolic rate may be an important means of extending stored sperm lifespan and functionality in crickets. Our data also provide a possible explanation for why traits of ejaculates sampled from the male may be rather poor predictors of paternity in sexual selection studies and likelihood of pregnancy in reproductive medicine.  相似文献   

8.
Cryptic female choice may enable polyandrous females to avoid inbreeding or bias offspring variability at key loci after mating. However, the role of these genetic benefits in cryptic female choice remains poorly understood. Female red junglefowl, Gallus gallus, bias sperm use in favour of unrelated males. Here, we experimentally investigate whether this bias is driven by relatedness per se, or by similarity at the major histocompatibility complex (MHC), genes central to vertebrate acquired immunity, where polymorphism is critical to an individual''s ability to combat pathogens. Through experimentally controlled natural matings, we confirm that selection against related males'' sperm occurs within the female reproductive tract but demonstrate that this is more accurately predicted by MHC similarity: controlling for relatedness per se, more sperm reached the eggs when partners were MHC-dissimilar. Importantly, this effect appeared largely owing to similarity at a single MHC locus (class I minor). Further, the effect of MHC similarity was lost following artificial insemination, suggesting that male phenotypic cues might be required for females to select sperm differentially. These results indicate that postmating mechanisms that reduce inbreeding may do so as a consequence of more specific strategies of cryptic female choice promoting MHC diversity in offspring.  相似文献   

9.
The changes of galactolipids (MGDG and DGDG, largely 18:3/18:3), free fatty acids (FFA), and phosphatidylcholine (PC) taking place during senescence of primary barley leaves were analysed employing HPLC and GLC. Upon induction of senescence MGDG and, with some delay, DGDG began to disappear and were largely broken down at the end of the senescence period. A concomitant appearance of a pool of FFA could not be observed. However, PC accumulated during the main period of galactolipid breakdown. This change was due to the marked increase of the 18:3/18:3 molecular species of PC. An inverse correlation between the changes of galactolipids and PC could be established. A hypothesis featuring the conversion of galactolipids via diacylglycerol to PC is presented as the principal route of galactolipid breakdown.  相似文献   

10.
11.
Evolutionary theories of ageing posit that increased reproductive investment occurs at the expense of physiological declines in later life. Males typically invest heavily in costly sexual ornaments and behaviour, but evidence that the expression of these traits can cause senescence is lacking. Long-lived houbara bustards (Chlamydotis undulata) engage in extravagant sexual displays to attract mates and here we show that males investing most in these displays experience a rapid senescent deterioration of spermatogenic function at a younger age. This effect is sufficiently large that the expected links between male 'showiness' and fertility reverse in later life, despite 'showy' males continuing to display at near maximal levels. We show that our results cannot be explained by the selective disappearance of competitive phenotypes and that they are instead consistent with an early vs. late life trade-off in male reproductive competence, highlighting the potential significance of sexual selection in explaining rates of ageing.  相似文献   

12.
研究发现衰老成纤维细胞抗凋亡. 为探明其机制,检测与凋亡相关的信号传导通路JNK、p38和Akt在细胞衰老过程中是否发生改变.在本研究中,UV被用作JNK和p38传导通路的诱导剂,胎牛血清用作Akt通路的诱导剂.结果表明: p38和Akt在年轻和衰老细胞中均能被相应的诱导剂活化;相反, UV照射却不能有效激活衰老细胞中JNK的活性.结果提示:衰老细胞对凋亡诱导不敏感可能与JNK不能被有效活化有关.  相似文献   

13.
The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double‐strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA‐SCARS. Here, we developed a method, named ‘DNA damage in situ ligation followed by proximity ligation assay’ (DI‐PLA) for the detection and imaging of DSBs in cells. DI‐PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double‐stranded DNA oligonucleotides, which are next recognized by antibiotin anti‐bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI‐PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI‐PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.  相似文献   

14.
胞膜小窝(caveolae)是细胞质膜内陷所形成的囊状结构.小窝蛋白(caveolin)是胞膜小窝区别于其它脂筏结构的特征性蛋白分子,维持胞膜小窝的结构和功能,包括3个家族成员小窝蛋白-1、小窝蛋白-2和小窝蛋白-3.其中,小窝蛋白-1是参与胆固醇平衡、分子运输和跨膜信号发放事件的主要结构成分,从而调节细胞的生长、发育和增殖.小窝蛋白-1在细胞衰老中起着重要调控作用,主要通过p53-p21及p16-Rb信号通路抑制细胞增殖、酪氨酸激酶的级联反应,调控粘连信号级联、胰岛素信号及雌激素信号系统等途径调控衰老进程.衰老过程中不同器官小窝蛋白-1变化趋势不尽一致.近年研究还发现,小窝蛋白-1与神经系统退行性疾病、糖尿病、动脉粥样硬化等衰老相关疾病密切相关,通过调节多条信号通路参与这些疾病的发生发展.本文结合最新研究进展,对小窝蛋白-1在细胞衰老进程的作用及参与衰老相关疾病进行综述.  相似文献   

15.
16.
 以体外培养的不同代龄的人胚肺二倍体成纤维细胞(2 B S)为对象,紫外线诱导 D N A 损伤后,观察细胞形态、增殖特性、细胞周期、 D N A 修复变化等细胞应答以及 gadd153、p21 W A F1/ C I P1/ S D I1、p53 等基因的转录水平的表达变化.结果显示:紫外线诱导 D N A 损伤后,衰老(> 55 代)2 B S细胞形态及增殖能力的改变不如年轻细胞(< 30 代)显著;不同代龄的细胞损伤后均出现 G1 期阻滞现象,年轻细胞 G1 期阻滞率明显高于衰老细胞( P< 005);衰老细胞总的修复能力较年轻细胞明显下降( P< 001);同时,gadd153、p21、p53 等的可诱导性均低于年轻 2 B S细胞.由此,分别在细胞水平与基因水平反映了衰老细胞经紫外线照射损伤后的细胞应答变化与修复机能减退的关系.  相似文献   

17.
衰老是细胞的重要生命现象之一,衰老假说之一认为细胞中残留DNA损伤的积累可加速细胞的衰老.因此,细胞内DNA损伤监测及修复系统的正常运行与细胞衰老调控密切相关,DNA损伤监测及修复相关酶如PARP、DNA-PK、ATM、p53等在细胞衰老中的调控作用日益受到广泛关注.研究这些蛋白质分子间的相互作用及其在细胞衰老过程中的调控功能,有利于揭示DNA损伤应激、损伤修复调控与细胞衰老之间的内在联系,为抗衰老研究及从衰老角度治疗肿瘤提供新的思路.  相似文献   

18.
The evolution of female mate choice, broadly defined to include any female behaviour or morphology which biases matings towards certain male phenotypes, is traditionally thought to result from direct or indirect benefits which females acquire when mating with preferred males. In contrast, new models have shown that female mate choice can be generated by sexual conflict, where preferred males may cause a fitness depression in females. Several studies have shown that female Drosophila melanogaster bias matings towards large males. Here, we use male size as a proxy for male attractiveness and test how female fitness is affected by reproducing with large or small males, under two different male densities. Females housed with large males had reduced lifespan and aged at an accelerated rate compared with females housed with small males, and increased male density depressed female fitness further. These fitness differences were due to effects on several different fitness components. Female fitness covaried negatively with male courtship rate, which suggests a cost of courtship. Mating rate increased with male size, whereas female fitness peaked at an intermediate mating rate. Our results suggest that female mate choice in D. melanogaster is, at least in part, a by-product of sexual conflict over the mating rate.  相似文献   

19.
20.
Tang H  Hilton B  Musich PR  Fang DZ  Zou Y 《Aging cell》2012,11(2):363-365
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder because of a LMNA gene mutation that produces a mutant lamin A protein (progerin). Progerin also has been correlated to physiological aging and related diseases. However, how progerin causes the progeria remains unknown. Here, we report that the large subunit (RFC1) of replication factor C is cleaved in HGPS cells, leading to the production of a truncated RFC1 of ~ 75 kDa, which appears to be defective in loading proliferating cell nuclear antigen (PCNA) and pol δ onto DNA for replication. Interestingly, the cleavage can be inhibited by a serine protease inhibitor, suggesting that RFC1 is cleaved by a serine protease. Because of the crucial role of RFC in DNA replication, our findings provide a mechanistic interpretation for the observed early replicative arrest and premature aging phenotypes of HPGS and may lead to novel strategies in HGPS treatment. Furthermore, this unique truncated form of RFC1 may serve as a potential marker for HGPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号