首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Genetic manipulations with enteropathogenic Yersinia enterocolitica O:8 are complicated by the presence of an efficient PstI-like YenI restriction-modification (R-M) system. We have characterized the YenI R-M system in Y. enterocolitica O:8, biotype 1B. A 5039 bp DNA fragment of the pSAK2 recombinant plasmid carrying the yenI locus was used to determine the nucleotide sequence. DNA sequence analysis identified a single 2481 bp open reading frame (ORF) that encodes an 826 amino acid large polypeptide having an apparent molecular mass of 93 kDa. The N-terminal part of the YenI ORF has 45 and 40% identity to PstI and BsuI methyltransferases (MTases), respectively; while the C-terminal part depicts 55 and 45% identity to endonucleases (ENases) of both isoschyzomeric enzymes. The yenI gene was cloned into pT7-5 plasmid and has been shown to encode a single polypeptide of expected molecular mass. A specific recognition sequence, typical to the type II R-M systems and single peptide organization, typical to type IV R-M systems, make YenI unique among known restriction-modification systems. We have constructed a truncated recombinant variant of YenI enzyme, which conserved only MTase activity, and that can be applied to YenI methylation of the DNA to be transformed into Y. enterocolitica O:8 biotype 1B strains.  相似文献   

5.
Epr, a minor extracellular protease, is involved in the swarming motility of Bacillus subtilis . It does so by providing essential signals required for swarming. It has also been demonstrated that DegU is required for swarming and that it occurs at very low levels of DegU∼P and is inhibited at high levels of DegU∼P. In this study, we show that maximal epr expression is observed at very low concentrations of DegU∼P, whereas it is repressed at high DegU∼P. A parallel effect of DegU∼P levels on swarming motility is also observed, where very low levels of DegU∼P support swarming and excessive DegU∼P abolishes swarming. We further demonstrate that the defect of swarming motility in a degU strain can be rescued, albeit incompletely, by increased expression of an exogenous epr gene. We also show that an additional extracellular factor(s), apart from epr , regulated by DegU, is required for robust swarming.  相似文献   

6.
Abnormal, uncoordinated swarming motility of the opportunistic human pathogen Proteus mirabilis was seen when a crude extract of the Australian red alga Delisea pulchra was added to the medium. This occurred at concentrations at which growth rate, swimming motility, cell elongation, polynucleation, and hyperflagellation were not affected. One halogenated furanone from D. pulchra inhibited swarming motility at concentrations that did not affect growth rate and swimming motility. Other structurally similar D. pulchra furanones had no effect on swarming, suggesting considerable specificity in the effects of furanones on swarming motility by P. mirabilis.  相似文献   

7.
8.
Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and an rhlC mutant (deficient in dirhamnolipid production) exhibited altered swarming patterns characterized by irregularly shaped tendrils. In addition, agar supplemented with rhamnolipid-containing spent supernatant inhibited wild-type (WT) swarming, whereas agar supplemented with spent supernatant from mutants that do not make rhamnolipids had no effect on WT P. aeruginosa swarming. Addition of purified rhamnolipids to swarming medium also inhibited swarming motility of the WT strain. We also show that a sadB mutant does not sense and/or respond to other groups of swarming cells and this mutant was capable of swarming on media supplemented with rhamnolipid-containing spent supernatant or purified rhamnolipids. The abilities to produce and respond to rhamnolipids in the context of group behavior are discussed.  相似文献   

9.
The chemotaxis system, but not chemotaxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium. Mutants in the chemotaxis pathway exhibit fewer and shorter flagella, downregulate class 3 or 'late' motility genes, and appear to be less hydrated when propagated on a surface. We show here that the output of the chemotaxis system, CheY approximately P, modulates motor bias during swarming as it does during chemotaxis, but for a distinctly different end. A constitutively active form of CheY was found to promote swarming in the absence of several upstream chemotaxis components. Two point mutations that suppressed the swarming defect of a cheY null mutation mapped to FliM, a protein in the motor switch complex with which CheY approximately P interacts. A common property of these suppressors was their increased frequency of motor reversal. These and other data suggest that the ability to switch motor direction is important for promoting optimal surface wetness. If the surface is sufficiently wet, exclusively clockwise or counterclockwise directions of motor rotation will support swarming, suggesting also that the bacteria can move on a surface with flagellar bundles of either handedness.  相似文献   

10.
Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased in the absence of rhamnolipid surfactant production. Transposon insertions in gacA and gacS increased sliding motility and restored tendril formation to spreading colonies, while transposon insertions in retS abolished motility. These changes in motility were not accompanied by detectable changes in rhamnolipid surfactant production or by the appearance of bacterial surface structures that might power sliding motility. We propose that P. aeruginosa requires flagella during swarming to overcome adhesive interactions mediated by type IV pili. The apparent dependence of sliding motility on environmental cues and regulatory pathways that also affect swarming motility suggests that both forms of motility are influenced by similar cohesive factors that restrict translocation, as well as by dispersive factors that facilitate spreading. Studies of sliding motility may be particularly well-suited for identifying factors other than pili and flagella that affect community behaviors of P. aeruginosa.  相似文献   

11.
Two N-acyl-homoserine lactone (acyl-HSL) synthase genes, lasI from Pseudomonas aeruginosa and yenI from Yersinia enterocolitica, were introduced into tobacco, individually and in combination. Liquid chromatograph-tandem mass spectrometry and thin-layer chromatography confirmed products of lasI and yenI activity in single and cotransformants. Cotransformants expressing plastid-localized LasI and YenI synthases produced the major acyl-HSLs for each synthase in all tissues tested. Total acyl-HSL signals accumulated in leaf tissue up to 3 pmol/mg of fresh weight, half as much in stem tissue, and approximately 10-fold less in root tissues. Acyl-HSLs were present in aqueous leaf washes from greenhouse-grown transgenic plants. Transgenic lines grown for 14 days under axenic conditions produced detectable levels of acyl-HSLs in root exudates. Ethyl acetate extractions of rhizosphere and nonrhizosphere soil from transgenically grown plants contained active acyl-HSLs, whereas plant-free soil or rhizosphere and nonrhizosphere soil from wild-type plants lacked detectable amounts of acyl-HSLs. This work shows that bioactive acyl-HSLs are exuded from leaves and roots and accumulate in the phytosphere of plants engineered to produce acyl-HSLs. These data further suggest that plants that are bioengineered to synthesize acyl-HSLs can foster beneficial plant-bacteria communications or deter deleterious interactions. Therefore, it is feasible to use bioengineered plants to supplement soils with specific acyl-HSLs to modulate bacterial phenotypes and plant-associated bacterial community structures.  相似文献   

12.
The stator-force generator that drives Na+-dependent motility in alkaliphilic Bacillus pseudofirmus OF4 is identified here as MotPS, MotAB-like proteins with genes that are downstream of the ccpA gene, which encodes a major regulator of carbon metabolism. B. pseudofirmus OF4 was only motile at pH values above 8. Disruption of motPS resulted in a non-motile phenotype, and motility was restored by transformation with a multicopy plasmid containing the motPS genes. Purified and reconstituted MotPS from B. pseudofirmus OF4 catalysed amiloride analogue-sensitive Na+ translocation. In contrast to B. pseudofirmus, Bacillus subtilis contains both MotAB and MotPS systems. The role of the motPS genes from B. subtilis in several motility-based behaviours was tested in isogenic strains with intact motAB and motPS loci, only one of the two mot systems or neither mot system. B. subtilis MotPS (BsMotPS) supported Na+-stimulated motility, chemotaxis on soft agar surfaces and biofilm formation, especially after selection of an up-motile variant. BsMotPS also supported motility in agar soft plugs immersed in liquid; motility was completely inhibited by an amiloride analogue. BsMotPS did not support surfactin-dependent swarming on higher concentration agar surfaces. These results indicate that BsMotPS contributes to biofilm formation and motility on soft agar, but not to swarming, in laboratory strains of B. subtilis in which MotAB is the dominant stator-force generator. BsMotPS could potentially be dominant for motility in B. subtilis variants that arise in particular niches.  相似文献   

13.
14.

Background  

Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.  相似文献   

15.
Photorhabdus temperata, an insect pathogen and nematode symbiont, is motile in liquid medium by swimming. We found that P.?temperata was capable of surface movement, termed swarming behavior. Several lines of evidence indicate that P. temperata use the same flagella for both swimming and swarming motility. Both motility types required additional NaCl or KCl in the medium and had peritrichous flagella, which were composed of the same flagellin as detected by immunoblotting experiments. Mutants defective in flagellar structural proteins were nonmotile for both motility types. Unlike swimming, we observed swarming behavior to be a social form of movement in which the cells coordinately formed intricate channels covering a surface. The constituents of the swarm media affected motility. Swarming was optimal on low agar concentrations; as agar concentrations increased, swarm ring diameters decreased.  相似文献   

16.
N-acylhomoserine lactones (AHLs) play a critical role in plant/microbe interactions. The AHL, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), induces exoenzymes that degrade the plant cell wall by the pathogenic bacterium Erwinia carotovora. Conversely, the antifungal activity of the biocontrol bacterium Pseudomonas aureofaciens 30-84 is due (at least in part) to phenazine antibiotics whose synthesis is regulated by N-hexanoylhomoserine lactone (HHL). Targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in plants of the cognate AHL signaling molecules (OHHL and HHL). The AHLs produced by the transgenic plants were sufficient to induce target gene expression in several recombinant bacterial AHL biosensors and to restore biocontrol activity to an HHL-deficient P. aureofaciens strain. In addition, pathogenicity was restored to an E. carotovora strain rendered avirulent as a consequence of a mutation in the OHHL synthase gene, carI. The ability to generate bacterial quorum-sensing signaling molecules in the plant offers novel opportunities for disease control and for manipulating plant/microbe interactions.  相似文献   

17.
The motility and chemotaxis systems are critical for the virulence of leptospires. In this study, the phylogenetic profiles method was used to predict the interaction of chemotaxis proteins. It was shown that CheW1 links to CheA1, CheY, CheB and CheW2, CheW3 links to CheA2, MCP (LA2426), CheB3 and CheD1; and CheW2 links only to CheW1. The similarity analysis demonstrated that CheW2 of Leptospira interrogans strain Lai had poor homology with Chew of Escherichia coli in the region of residues 30-50. In order to verify the function of these proteins, the putative cheW genes were cloned into pQE31 vector and expressed in wild-type E. coli strain RP437 or chew defective strain RP4606. The swarming results indicated that CheW1 and CheW3 could restore swarming of RP4606 while CheW2 could not. Overexpression of CheW1 and CheW3 in RP437 inhibited the swarming of RP437, whereas the inhibitory effect of CheW2 was much lower. Therefore, we presumed that CheW1 and CheW3 might have the function of CheW while CheW2 does not. The existence of multiple copies of chemotaxis homologue genes suggested that L. interrogans strain Lai might have a more complex chemosensory pathway.  相似文献   

18.
Plant viruses are inducers and targets of RNA silencing. Viruses counteract with RNA silencing by expressing silencing-suppressor proteins. Many of the identified proteins bind siRNAs, which prevents assembly of silencing effector complexes, and also interfere with their 3' methylation, which protects them against degradation. Here, we investigated the 3' modification of silencing-related small RNAs in Nicotiana benthamiana plants infected with viruses expressing RNA silencing suppressors, the p19 protein of Carnation Italian ringspot virus (CIRV) and HC-Pro of Tobacco etch virus (TEV). We found that CIRV had only a slight effect on viral siRNA 3' modification, but TEV significantly inhibited the 3' modification of si/miRNAs. We also found that p19 and HC-Pro were able to bind both 3' modified and non-modified small RNAs in vivo. The findings suggest that the 3' modification of viral siRNAs occurs in the cytoplasm, though miRNA 3' modification likely takes place in the nucleus as well. Both silencing suppressors inhibited the 3' modification of si/miRNAs when they and small RNAs were transiently co-expressed, suggesting that the inhibition of si/miRNA 3' modification requires spatial and temporal co-expression. Finally, our data revealed that a HEN1-like methyltransferase might account for the small RNA modification at the their 3'-terminal nucleotide in N. benthamiana.  相似文献   

19.
Pseudomonas aeruginosa exhibits distinct surface-associated behaviors, including biofilm formation, flagellum-mediated swarming motility, and type IV pilus-driven twitching. Here, we report a role for the minor pilins, PilW and PilX, components of the type IV pilus assembly machinery, in the repression of swarming motility. Mutating either the pilW or pilX gene alleviates the inhibition of swarming motility observed for strains with elevated levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP) due to loss of BifA, a c-di-GMP-degrading phosphodiesterase. Blocking PilD peptidase-mediated processing of PilW and PilX renders the unprocessed proteins defective for pilus assembly but still functional in c-di-GMP-mediated swarming repression, indicating our ability to separate these functions. Strains with mutations in pilW or pilX also fail to exhibit the increase in c-di-GMP levels observed when wild-type (WT) or bifA mutant cells are grown on a surface. We also provide data showing that c-di-GMP levels are increased upon PilY1 overexpression in surface-grown cells and that this c-di-GMP increase does not occur in the absence of the SadC diguanylate cyclase. Increased levels of endogenous PilY1, PilX, and PilA are observed when cells are grown on a surface compared to liquid growth, linking surface growth and enhanced signaling via SadC. Our data support a model wherein PilW, PilX, and PilY1, in addition to their role(s) in type IV pilus biogenesis, function to repress swarming via modulation of intracellular c-di-GMP levels. By doing so, these pilus assembly proteins contribute to P. aeruginosa's ability to coordinately regulate biofilm formation with its two surface motility systems.  相似文献   

20.
The roles of honey bee queen mandibular pheromone and colony congestion in the inhibition of swarming were investigated. Two colony siz.es were used: small, congested colonies and large, uncongested colonies. Both groups of colonies were treated with various dosages of the five-component, synthetic queen mandibular pheromone in the spring, and the extent and timing of swarming were followed. Most treatment groups received pheromone or a solvent blank (control) on a stationary slide; one group of the congested colonies received a pheromone treatment via an aerosol spray. The pheromone was not effective at delaying swarming in the congested colonies at any dosage applied on slides, but the aerosol spray-treated colonies swarmed significantly later in the season than the control colonies. The uncongested, pheromone-treated colonies exhibited a dose-dependent delay in swarming, with the highest dosage colonies swarming almost four weeks later than the control colonies. These results indicate an interaction between congestion and pheromone in the control of honey bee reproduction. While congestion may in itself be a factor stimulating swarming, these results are consistent with the interpretation that colony congestion reduces the transmission of queen pheromone within the nest, thereby removing the queen 's pheromone-based inhibition of queen rearing and subsequent swarming by workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号