首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is widely recognized that we are entering an extinction event on a scale approaching the mass extinctions seen in the fossil record. Present-day rates of extinction are estimated to be several orders of magnitude greater than background rates and are projected to increase further if current trends continue. In vertebrates, species traits, such as body size, fecundity, and geographic range, are important predictors of vulnerability. Although plants are the basis for life on Earth, our knowledge of plant extinctions and vulnerabilities is lagging. Here, we disentangle the underlying drivers of extinction risk in plants, focusing on the Cape of South Africa, a global biodiversity hotspot. By comparing Red List data for the British and South African floras, we demonstrate that the taxonomic distribution of extinction risk differs significantly between regions, inconsistent with a simple, trait-based model of extinction. Using a comprehensive phylogenetic tree for the Cape, we reveal a phylogenetic signal in the distribution of plant extinction risks but show that the most threatened species cluster within short branches at the tips of the phylogeny--opposite to trends in mammals. From analyzing the distribution of threatened species across 11 exemplar clades, we suggest that mode of speciation best explains the unusual phylogenetic structure of extinction risks in plants of the Cape. Our results demonstrate that explanations for elevated extinction risk in plants of the Cape flora differ dramatically from those recognized for vertebrates. In the Cape, extinction risk is higher for young and fast-evolving plant lineages and cannot be explained by correlations with simple biological traits. Critically, we find that the most vulnerable plant species are nonetheless marching towards extinction at a more rapid pace but, surprisingly, independently from anthropogenic effects. Our results have important implications for conservation priorities and cast doubts on the utility of current Red List criteria for plants in regions such as the Cape, where speciation has been rapid, if our aim is to maximize the preservation of the tree-of-life.  相似文献   

3.
The biodiversity of the Cape Peninsula (49127 ha in extent) has been considerably affected by various factors since European settlement in 1652. Urbanization and agriculture have transformed 37% of the original area of natural vegetation. Lowland vegetation types have been worst affected, with almost half of the transformation occurring in one of the 15 recognized vegetation types. Vegetation at high altitudes has been little affected by urbanization and agriculture, but alien trees and shrubs are now threatening biodiversity in these areas. Of the area not affected by urbanization and agriculture 10.7% is currently under dense stands (>25% canopy cover) of alien plants and another 32.9% is lightly invaded. Dense stands of Acacia cyclops, the most widespread invader, cover 2510 ha, 76% of the total area under dense alien stands. This paper assesses the impacts of these factors on aspects of the plant biodiversity of the area, namely, the distribution of major vegetation types and of endemic, rare and threatened plant taxa and of taxa in the Proteaceae (a prominent element in almost all communities, taken as an indicator of overall plant biodiversity).Possible future impacts on biodiversity are assessed by considering the effects of several scenarios involving increased urbanization and changes to alien plant control strategies and further spread over the next 50–100 years. The worst-case scenario for urbanization sees the area under natural vegelation reduced to 12163 ha (39.3% of its extent in 1994, or 24.8% of its original extent). Under this scenario almost a quater of the 161 endemic, rare and threatened (special) taxa are confined totally to urban areas; 57.4% of the known localities of these taxa, and 40.1% of the remaining localities of Proteaceae taxa are transformed. Dense alien stands currently affect 29.8% of the localities of special taxa known from herbarium records and 8.4% of these taxa currently occur only in areas at present affected by aliens. Clearing all dense stands would result in 62.9% of special taxa having less than half of their known localities affected (49.1% at present). Under this scenario, 92% of Proteaceae taxa have more than 75% of their localities unaffected by aliens. If clearing is confined to specific areas (the Cape Peninsula Protected Natural Environment or all publicly-owned land) and the aliens spread further outside these areas, the area of natural vegetation remaining shrinks (to 82.4% of the current extent if control is confined to public land). The further losses in biodiversity associated with these scenarios are described. If control programmes collapse and all potentially invadable land is occupied by dense alien stands, only 407 ha of natural vegetation would remain (1.5% of the current extent).The probability of the various scenarios materializing is discussed. To minimize further losses in biodiversity it is essential that: (1) a major initiative is launched immediately to clear (firstly) the 10184 ha of lightly invaded vegetation and then the 3313 ha of densely invaded vegetation; (2) no urban development be permitted within the boundaries of the Cape Peninsula Protected Natural Environment; (3) a systematic programme of prescribed burning (linked to the alien control programme) is initiated; and (4) contingency measures are implemented to improve the status of seriously threatened taxa, habitats and vegetation types.  相似文献   

4.
5.
Suitable reservoirs and monitoring methods are needed to manage scarce water supplies in dry countries. We assessed here the impact on aquatic macroinvertebrates of the only dam on the Eerste River, which runs through the heart of a biodiversity hotspot, the Cape Floristic Region, South Africa. The dam and associated activities, were the only forms of disturbance in this otherwise pristine area. We sampled over 20,000 macroinvertebrate individuals and illustrated some categorical effects of the impoundment and its effects on macroinvertebrate assemblages. Macroinvertebrate species diversity below the dam was only half of that in the pristine catchment area above the dam. Furthermore, Ephemeroptera, Plecoptera and Trichoptera diversity and abundance dropped to almost zero as a result of the impoundment. In contrast, the abundance of the Diptera family Chironomidae increased substantially below the dam. These changes in macroinvertebrate diversity mirrored those recorded in biologically less diverse areas, but are of major concern in this biodiversity hotspot with its rich endemic fauna. We conclude that such an impoundment, while important for human welfare, results in a high price being paid in terms of loss of local biodiversity.  相似文献   

6.
The Cape Peninsula is an area of outstanding biological importance, not only for to its high levels of floristic diversity and endemism, but also for its number of localised endemic invertebrates. Little is known of the spatial distribution of invertebrates across the Peninsula, or how best to conserve them. Sampling by visual searches assisted by aerial and aquatic hand-nets was undertaken throughout the Peninsula. The most important areas for insect diversity on the Peninsula, and associated environmental variables, were determined. The ‘Peninsula effect’ was also investigated. Nine Red Listed species and five new species for the Peninsula were recorded. This high number of Red Listed species (for those few groups that have been assessed) emphasises the biological importance of the Cape Peninsula. Table Mountain had the most Red Listed species, while Cape Point had many species not found in the other areas. Noordhoek Wetland is very important for aquatic Coleoptera. Small hills on the Peninsula are important for overall insect diversity. Elevation, slope, aspect, distance to water and vegetation structure were the most important environmental variables in determining the insect assemblages. The Peninsula effect appears to have no influence on these particular insect assemblages of the Cape Peninsula. The high number of new Peninsula records for well-known taxonomic groups indicates that still little is known of the insect assemblages across the Peninsula. Nevertheless, areas of conservation priority identified in this study are Table Mountain (for Red Listed species), Noordhoek (for aquatic Coleoptera) and Cape Point and the small hills across the Peninsula (for their unique invertebrate assemblages). Conservation of a variety of elevations, including steep and flat areas, all aspects of mountains, as well as both the wet and dry areas, overall will contribute to the conservation of the insects.  相似文献   

7.
Phylogenetic relationships in the largely South African genus Muraltia (Polygalaceae) are assessed based on DNA sequence data (nuclear ribosomal ITS, plastid atpB-rbcL spacer, trnL intron, and trnL-F spacer) for 73 of the 117 currently recognized species in the genus. The previously recognised subgenus Muraltia is monophyletic, but the South African endemic genus Nylandtia is embedded in Muraltia subgenus Psiloclada. Subgenus Muraltia is found to be sister to subgenus Psiloclada. Estimates show the beginning of diversification of the two subgenera in the early Miocene (Psiloclada, 19.3+/-3.4 Ma; Muraltia, 21.0+/-3.5 Ma) pre-dating the establishment of the Benguela current (intermittent in the middle to late Oligocene and markedly intensifying in the late Miocene), and summer-dry climate in the Cape region. However, the later increase in species numbers is contemporaneous with these climatic phenomena. Results of dispersal-vicariance analyses indicate that major clades in Muraltia diversified from the southwestern and northwestern Cape, where most of the species are found today.  相似文献   

8.
The concept of biodiversity hotspot at the regional and global scale has contributed to the improvement of the conservation strategies. The need for precise evaluation is often hampered by lapses of knowledge in some Mediterranean regional hotspots. The objective of the present work is to analyse the diversity of endemic and rare flora in the northern part of Algeria. According to the bibliographical data that are available, the most remarkable areas for endemism are the Oran's coast, the Great Kabylia, and the Small Kabylia. As far as rare species are concerned, coastal Numidia comes first, then the Algiers surroundings. This group 'Kabylias-Numidia-Kroumiria' comprises an unrecognised regional hotspot, made of forests, mountains and coastal ecosystems and threatened by human activities. In the face of growing threats, it is urgent to reinforce national and international policies of conservation and to cooperate for a better floristic knowledge of all the areas mentioned above.  相似文献   

9.
Mountains present particular challenges for biodiversity conservation. Table Mountain is a significant mountain in a global biodiversity hotspot, the Cape Floristic Region. It has outstanding angiosperm diversity and endemism. Yet, aerial and foliage invertebrates in the area have been poorly studied, despite their importance as pollinators and predators. These plant and invertebrate assemblages are under great pressure from human disturbance. Aerial and foliage invertebrates were sampled with a range of techniques. Sites were chosen to make comparisons between vegetation structure and type, elevation and aspect. In total, 216 species from 63 families and 14 orders were recorded. Vegetation structure (fynbos or forest) and elevation were the most important environmental variables for both aerial and foliage invertebrates. Peak time for aerial invertebrate abundance was spring and summer in the fynbos and spring in the forests, while the foliage invertebrates showed very little seasonal variation. There was no correlation between the diversity of aerial and foliage invertebrates. When these results were compared with others on epigaeic invertebrates, it became clear that epigaeic and aerial invertebrates are not correlated, while epigaeic and foliage invertebrates were only partially correlated, but not sufficiently so to consider one as a reliable estimator of the other. The management pointer from this study is that sites at all elevations are vital for the conservation of biodiversity on Table Mountain. Both the aerial and epigaeic/foliage invertebrate assemblages will need to be monitored separately to maintain the mountain’s conservation status.  相似文献   

10.
11.
Biodiversity and Conservation - Tropical forests suffer severe habitat destruction. Thus, tropical forests frequently consist today of only a few small remnants that are often embedded within a...  相似文献   

12.
The City of Cape Town (City) covers 2460 km2 in the southwestern corner of the Cape Floristic Region biodiversity hotspot. Established in 1654, by 1700 there were no animals larger than 50 kg within 200 km of the City. However, apart from an appreciation that timber and firewood were becoming scarce, it was only in the 1930s that the first farm near Cape Point was set aside for conservation. Table Mountain was declared a National Monument in 1958, while it was largely covered by pine and gum plantations. Conservation of the montane areas thereafter expanded, whereas the lowlands were largely ignored, except for a few bird sanctuaries. Only in 1982 was the plight of the lowlands highlighted. Although ad hoc conservation planning was undertaken subsequently, 1997 saw the first priority categorization and conservation plan. The current situation is perilous: a huge effort will be required to meet basic conservation targets for the lowland vegetation types and threatened species. Local and international partners and funders will be key to achieving this. In eight of the City's 19 national vegetation types the minimum conservation targets are not achievable. Of the 3250 plant species estimated to occur in the City, 13 are extinct and 319 are threatened according to the IUCN Red List: this is 18% of the threatened Red List species in South Africa. Now for the first time, implementation is being attempted holistically across the metropole with discussion between internal City and external stakeholders to implement the conservation plan. However, the interim plans towards achieving this — that 60% of the unproclaimed target is secured by 2014, requires that over 40 km2 be conserved per annum. This leaves 340 km2 that should be secured by 2020 when projections from City spatial growth indicate that the last critical remnants will be urbanized.  相似文献   

13.
The California Floristic Province harbours more endemic plant and animal taxa and more identifiable subspecies than any other area of comparable size in North America. We present evidence that physical historical processes have resulted in congruent patterns of genetic diversity over the past 2-10 million years. Using a molecular clock approach we show that diversification and establishment of spatial genetic structure across six taxonomic groups coincide with the putative age of California's mountain ranges and aridification in the region. Our results demonstrate the importance of geographical barriers and climatological events to species diversification and the overall geographical structure of biodiversity. These results should facilitate conservation efforts in this biodiversity hotspot for taxa whose population genetic structure is still unknown and may suggest the potential utility of this approach in regional conservation planning efforts.  相似文献   

14.
15.
Floristic diversity in the Cape Flora of South Africa   总被引:1,自引:0,他引:1  
Comprising a land area of ca 90000 km2, less than 4% of the total land area for the Southern African subcontinent, the Cape Floristic Province is one of the world's richest areas in terms of botanical diversity for its size. An estimated 8650 species of vascular plants occur in this area, about 65% of which are endemic. This is about 42% of the estimated total for all of southern Africa. The number of species packed into so small an area is remarkable for the temperate zone, and compares closely with species totals for areas of comparable size in the wet tropics. The Cape Region consists of a mosaic of sandstone and shale substrates that give rise to soils of quite different types, and in addition local areas of limestone add to the edaphic diversity. Climates across the region are extremely variable, and the predominant orographic rainfall pattern ranges from 2000mm locally to less than 100mm, often with extremely steep gradients, the result of a mountainous landscape. The edaphic diversity resulting from a mosaic of different soils is compounded by sharp local gradients in precipitation that creates an unusual number of local habitats. A feature of the some of the soils in the Region is low nutrient levels and many of the plants on such soils have low seed dispersal capabilities, a factor important in explaining the high levels of local endemism. Species richness in the Cape Region is hypothesized to have resulted from the presence of a complex mosaic of diverse habitats and steep ecological gradients against a background of relatively stable climate and geology after the mediterranean climate was established there sometime after the beginning of the Pliocene. A local or ecological mode of speciation may have been more important under these conditions than allopatric speciation.  相似文献   

16.
17.
18.
We determined the environmental correlates of vascular plant biodiversity in the Baetic‐Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic‐Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi‐partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic‐Rifan hotspot. In the Baetic range, climate was the most significant driver of nonendemic species beta diversity, while lithology and climate were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities – especially in their western ranges – due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic‐Rifan hotspot. Determinants of spatial turnover in biodiversity in the Baetic‐Rifan hotspot vary in importance between endemic and nonendemic species.  相似文献   

19.
The Cape mediterranean region, part of South Africa’s Cape Floristic Realm (CFR), is recognised for its rich diversity and high degree of endemism of terrestrial vegetation. We review the biodiversity of the aquatic flora and fauna using literature sources and museum data. Geological, palaeohistorical and climate data are examined in relation to the formation of the winter-rainfall regime. Prehistoric humans had minimal impact on the aquatic biotas. Patterns and processes relating to the present-day climate, ecosystem status, distribution and diversity of plants, invertebrates and vertebrates in the CFR are reviewed. The proportion of endemic CFR species relative to the total number of species known from southern Africa is estimated. Observed distribution patterns are evaluated against temperate Gondwana vicariance, old African migrations, the role of the ancient Cape fold mountains and Pangaea. The lack of Pleistocene glaciations in Africa, the oligotrophic nature of the river systems and the palaeohistorical origin and distribution of taxa are considered when assessing reasons for disjunct distribution patterns. Impacts of anthropogenic interference with aquatic ecosystems are evaluated. Fragmented jurisdiction of nature conservation authorities is seen as a problem for attaining adequate conservation of CFR aquatic ecosystems. Systematic conservation planning is under way for the region.  相似文献   

20.
Our aims were to quantify and map the plant ecoregions of the Atlantic Forest, a biodiversity hotspot that covers ca 150 million ha in eastern South America. We used a data set on the distribution of 4378 shrub and tree species across 711 localities. Plant ecoregions were identified using analyses of species turnover for both species occurrences and relative abundances. We interpolated NMDS axes of compositional variation over the entire the Atlantic Forest extent, and then classified the compositional dissimilarity according to the number of biogeographical ecoregions previously identified through K‐means analyses. We assessed the ability of environmental, historical vegetation stability and the current human footprint to explain the occurrence of the identified ecoregions through multinomial logistic regression models. We identified 21 spatially cohesive occurrence and 14 abundance ecoregions. Aridity, soil and historical biome stability were retained in the best model explaining both occurrence and abundance ecoregions. Broad compositional zones were identified through UPGMA cluster analysis of ecoregions, and formed north and south compositional blocks. Our work confirms the existence of a broad north–south divide within the Atlantic Forest, previously suggested based on climatic and amphibious data. Differences between the occurrence and abundance maps suggest the location of transition zones to neighbouring domains and endemism centres. Due to the aggregate nature of our analyses, site‐level disturbance degree was not considered, implying that human impacts could be broader then we could detect. There was limited overlap between our results and previous Atlantic Forest regionalization efforts, indicating that multi‐taxa, physiognomic and environmental regionalization schemes based on expert opinion or vegetation maps are poor proxies for compositional ecoregions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号