首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/β-catenin signaling to promote adipogenesis.  相似文献   

2.
Summary Mutants requiring S-adenosyl methionine (SAM) for growth have been selected in Saccharomyces cerevisiae. Two classes of mutants have been found. One class corresponds to the simultaneous occurrence of mutations at two unlinked loci SAM1 and SAM2 and presents a strict SAM requirement for growth on any medium. The second class corresponds to special single mutations in the gene SAM2 which lead to a residual growth on minimal medium but to normal growth on SAM supplemented medium or on a complex medium like YPGA not containing any SAM. These genetic data can be taken as an indication that Saccharomyces cerevisiae possesses two isoenzymatic methionine adenosyl transferases (MAT). In addition, SAM1 and SAM2 loci have been identified respectively with the ETH-10 and ETH2 loci previously described.Biochemical evidences corroborate the genetic results. Two MAT activities can be dissociated in a wild type extract (MATI and MATII) by DEAE cellulose chromatography. Mutations at the SAM1 locus lead to the absence or to the modification of MATII whereas mutations at the SAM2 locus lead to the absence or to the modification of MATI. Moreover, some of our results seem to show that MATI and MATII are associated in vivo.  相似文献   

3.
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.  相似文献   

4.
5.
6.
7.
8.
MAT2A基因小干扰RNA诱导人肝癌细胞凋亡的分子机制   总被引:3,自引:0,他引:3  
为探讨甲硫氨酸腺苷转移酶2A(MAT2A)小干扰RNA对人肝癌细胞生长和细胞凋亡的影响及其机 制,采用脂质体转染法将MAT2A小干扰RNA质粒表达载体转染人肝癌细胞系Bel 7402细胞、HepG 2细胞和 HepG3B细胞.半定量RT PCR检测MAT2A mRNA表达,Western印迹检测MAT2A 蛋白质表达, M TT法观察MAT2A小干扰RNA对肝癌细胞生长的影响,流式细胞仪及DAPI染色检测siRNA对肝癌细 胞凋亡的影响.为探讨其作用机制, 进一步检测转染后肝癌细胞MAT的活性、MAT1A mRNA表 达及SAM、SAH含量.结果发现, MAT2A小干扰RNA特异性抑制人肝癌细胞MAT2A mRNA和蛋白质 的表达, 刺激MAT表达由MAT2A向MAT1A转变, 降低了肝癌细胞中MATⅡ活性(P<005) ,从而诱导肝癌细胞凋亡; MAT2A小干扰RNA诱导Bel-7402细胞、HepG 2细胞、 Hep 3B细胞凋亡 指数分别为19.3%±2.8%、22.8%±3.5%、21.8%±4.2%, 较对照组siRNA(凋亡指数为5 2%±19%)具有明显差异(P<005).DAPI染色显示, MAT2A小干扰RNA转染组可见多个细胞核 浓缩、碎裂成蓝色的小块状,染色质凝聚,形成典型的凋亡小体, 而对照siRNA转染组未发现典型的 凋亡小体.肝癌细胞的生长也受到抑制,MAT2A小干扰RNA转染Bel 7402细胞、HepG 2细胞 、HepG3B细胞72 h后,细胞生长抑制率达高峰,分别为39.62%、41.27%、38.84%.肝癌细胞 中SAM含量明显升高(P<001),而SAH含量改变不明显, SAM/SAH变化伴随SAM含量变化而改 变.提示靶向MAT2A基因的siRNA通过升高肝癌细胞中SAM含量,刺激MAT表达由MAT2A向MAT1A转变, 从而诱导肝癌细胞凋亡,抑制肝癌细胞生长.  相似文献   

9.
Adiponectin (APN), a circulating adipose-derived hormone that regulates inflammation and energy metabolism, has beneficial effects on the cardiovascular disorders. Serum APN levels are lower in patients with coronary artery disease and higher in patients with chronic kidney disease. However, the precise role of APN in acute reno-vascular disease is not clear. Results of the present study show that serum APN concentration decreased after renal ischemia reperfusion (I/R) injury in mice. In addition, I/R-induced renal dysfunction (elevated serum creatinine and urea levels), inflammation (number of infiltrating neutrophils, myeloperoxidase activity), and apoptotic responses (apoptotic cell number and caspase-3 activation) were attenuated in APN-treated compared to control mice. Molecular and biochemical analysis revealed that APN up-regulates heme oxygenase-1 (HO-1) via peroxisome-proliferator-activated-receptor-α (PPARα) dependent pathway which is mediated through the enhancement of COX-2 and 6-keto PGF1α expression. Chromatin immune-precipitation assay demonstrated that APN increases the binding activity of PPARα to PPRE region of HO-1 promoter. Furthermore, APN induced HO-1 expression was only found in wild-type but not in PPARα gene deleted mice. This provides in vivo evidence that APN mediated HO-1 expression depends on PPARα regulation. In conclusion, our results provide a novel APN mediated prostacyclin-PPARα-HO-1 signaling pathway in protecting renal I/R injury.  相似文献   

10.
Many eukaryotic genes do not follow simple vertical inheritance. Elongation factor 1α (EF-1α) and methionine adenosyl transferase (MAT) are enzymes with complicated evolutionary histories and, interestingly, the two cases have several features in common. These essential enzymes occur as two relatively divergent paralogs (EF-1α/EFL, MAT/MATX) that have patchy distributions in eukaryotic lineages that are nearly mutually exclusive. To explain such distributions, we must invoke either multiple eukaryote-to-eukaryote horizontal gene transfers (HGTs) followed by functional replacement or presence of both paralogs in the common ancestor followed by long-term coexistence and differential losses in various eukaryotic lineages. To understand the evolution of these paralogs, we have performed in vivo experiments in Trypanosoma brucei addressing the consequences of long-term coexpression and functional replacement. In the first experiment of its kind, we have demonstrated that EF-1α and MAT can be simultaneously expressed with EFL and MATX, respectively, without affecting the growth of the flagellates. After the endogenous MAT or EF-1α was downregulated by RNA interference, MATX immediately substituted for its paralog, whereas EFL was not able to substitute for EF-1α, leading to mortality. We conclude that MATX is naturally capable of evolving patchy paralog distribution via HGTs and/or long- term coexpression and differential losses. The capability of EFL to spread by HGT is lower and so the patchy distribution of EF-1α/EFL paralogs was probably shaped mainly by deep paralogy followed by long-term coexistence and differential losses.  相似文献   

11.
12.
13.
14.
15.
Li J  Coïc E  Lee K  Lee CS  Kim JA  Wu Q  Haber JE 《PLoS genetics》2012,8(4):e1002630
During Saccharomyces cerevisiae mating-type switching, an HO endonuclease-induced double-strand break (DSB) at MAT is repaired by recombining with one of two donors, HMLα or HMRa, located at opposite ends of chromosome III. MATa cells preferentially recombine with HMLα; this decision depends on the Recombination Enhancer (RE), located about 17 kb to the right of HML. In MATα cells, HML is rarely used and RE is bound by the MATα2-Mcm1 corepressor, which prevents the binding of other proteins to RE. In contrast, in MATa cells, RE is bound by multiple copies of Fkh1 and a single copy of Swi4/Swi6. We report here that, when RE is replaced with four LexA operators in MATa cells, 95% of cells use HMR for repair, but expression of a LexA-Fkh1 fusion protein strongly increases HML usage. A LexA-Fkh1 truncation, containing only Fkh1's phosphothreonine-binding FHA domain, restores HML usage to 90%. A LexA-FHA-R80A mutant lacking phosphothreonine binding fails to increase HML usage. The LexA-FHA fusion protein associates with chromatin in a 10-kb interval surrounding the HO cleavage site at MAT, but only after DSB induction. This association occurs even in a donorless strain lacking HML. We propose that the FHA domain of Fkh1 regulates donor preference by physically interacting with phosphorylated threonine residues created on proteins bound near the DSB, thus positioning HML close to the DSB at MAT. Donor preference is independent of Mec1/ATR and Tel1/ATM checkpoint protein kinases but partially depends on casein kinase II. RE stimulates the strand invasion step of interchromosomal recombination even for non-MAT sequences. We also find that when RE binds to the region near the DSB at MATa then Mec1 and Tel1 checkpoint kinases are not only able to phosphorylate histone H2A (γ-H2AX) around the DSB but can also promote γ-H2AX spreading around the RE region.  相似文献   

16.
17.
(S)-adenosylmethionine (SAM) is a critical element of melatonin synthesis as the methyl donor in the last step of the pathway, the O-methylation of N-acetyl 5-hydroxytryptamine by hydroxyindole-O-methyltransferase. The activity of the enzyme that synthesizes SAM, methionine adenosyltransferase (MAT), increases 2.5-fold at night in the pineal gland. In this study, we found that pineal MAT2A mRNA and the protein it encodes, MAT II, also increase at night, suggesting that the increase in MAT activity is caused by an increase in MAT II gene products. The night levels of MAT2A mRNA in the pineal gland were severalfold higher than in other neural and non-neural tissues examined, consistent with the requirement for SAM in melatonin synthesis. Related studies indicate that the nocturnal increase in MAT2A mRNA is caused by activation of a well described neural pathway that mediates photoneural-circadian regulation of the pineal gland. MAT2A mRNA and MAT II protein were increased in organ culture by treatment with norepinephrine (NE), the sympathetic neurotransmitter that stimulates the pineal gland at night. NE is known to markedly elevate pineal cAMP, and here it was found that cAMP agonists elevate MAT2A mRNA levels by increasing MAT2A mRNA synthesis and that drugs that block cAMP activation of cAMP dependent protein kinase block effects of NE. Therefore, the NE-cAMP dependent increase in pineal MAT activity seems to reflect an increase in MAT II protein, which occurs in response to cAMP-->protein kinase-dependent increased MAT2A expression. The existence of this MAT regulatory system underscores the importance that MAT plays in melatonin biogenesis. These studies also point to the possibility that SAM production in other tissues might be regulated through cAMP.  相似文献   

18.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   

19.
20.
Summary In Saccharomyces cerevisiae either of the two genes SAM1 and SAM2 is able to produce a functional methionine adenosyl transferase (MATI and MATII). In a wild-type strain, MATI and MATII are present in dimeric forms: MATI-MATI, MATII-MATII and perhaps MATI-MATII. A hypothesis is presented to explain the possible role of these different forms of methionine adenosyl transferase in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号