首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
姚瑞枫  谢道昕 《植物学报》2020,55(4):397-402
植物激素信号传导途径中的抑制子(repressor) DELLA、AUX/IAA、JAZ和D53/SMXL均结合下游转录因子并抑制其转录活性, 从而阻遏激素响应基因的表达; 激素分子则激活信号传导链降解抑制子、释放转录因子, 从而诱导响应基因表达并介导相应的生物学功能。中国科学院遗传与发育生物学研究所李家洋研究团队最新的研究发现, 独脚金内酯(SL)信号途径中的SMXL6、SMXL7和SMXL8是具有抑制子和转录因子双重功能的新型抑制子, 他们还通过研究SL转录调控网络发现了大量新的SL响应基因, 揭示了SL调控植物分枝、叶片伸长和花色素苷积累的分子机制。这些重要发现为探索植物激素作用机理提供了新思路, 具有重要科学意义和应用前景。  相似文献   

2.
3.
The year 2001 saw an amazing progress in cytokinin studies. Ten years ago, cytokinin receptor genes and genes encoding cytokinin biosynthetic enzymes together with the corresponding proteins were identified in plants. These studies elucidated the molecular mechanism of cytokinin effects on the expression of cytokinin responsive genes and ultimately established the endogenous synthesis of cytokinins in plant cells, justifying their membership among plant hormones. The paper describes in short the edifying and sometimes paradoxical story of these fundamental and captivating discoveries.  相似文献   

4.
5.
The potential of a variety of xenobiotic compounds to modulate or disrupt the endocrine system of humans and wildlife is now widely recognized. In the present study, we developed a molecular tool for the evaluation of endocrine disruption in common carp (Cyprinus carpio). Suppression Subtractive Hybridization PCR was applied for the isolation of a relevant gene set, consisting of gender- and hormone-responsive gene fragments. This resulted in 398 different gene fragments that were most related to endocrine functioning. To investigate the applicability of this gene collection for studying endocrine disruption in fish, the gender-related genes were spotted on a cDNA macroarray, and expression profiles were generated for 17β-estradiol (E2) and cortisol. Therefore, fish were injected with these hormones, and after 24 h and 96 h RNA was extracted and used for macroarray hybridizations. E2 exposure resulted in a total of 35 differentially expressed genes, whereas cortisol only affected 3 genes spotted on the macroarray. These results indicate the discriminating power of the developed array, and its usefulness to describe the toxicological mode of action of endocrine disruptive chemicals.  相似文献   

6.
Li Sui  Bao-Ming Li 《Steroids》2010,75(12):988-733
Thyroid hormones have long been known to play important roles in the development and functions of the central nervous system, however, the precise molecular mechanisms that regulate thyroid hormone-responsive gene expression are not well understood. The present study investigated the role of DNA methylaion and histone acetylation in the effects of perinatal hypothyroidism on regulation of reelin and brain-derived neurotrophic factor (BDNF) gene expression in rat hippocampus. The findings indicated that the activities of DNA methyltransferase (DNMT), methylated reelin and BDNF genes were up-regulated, whereas, the activities of histone acetylases (HAT), the levels of global acetylated histone 3 (H3) and global acetylated histone 4 (H4), and acetylated H3, acetylated H4 at reelin promoter and at BDNF gene promoter for exon II were down-regulated in the hippocampus at the developmental stage of the hypothyroid animals. These results suggest that epigenetic modification of chromatin might underlie the mechanisms of hypothyroidism-induced down-regulation of reelin and BDNF gene expression in developmental rat hippocampus.  相似文献   

7.
8.
Plant hormones are small molecules that play important roles throughout the life span of a plant,known as auxin,gibberellin,cyto-kinin,abscisic acid,ethylene,jasmonic acid,salicylic acid,and brassinosteroid.Genetic and molecular studies in the model organism Arabidopsis thaliana have revealed the individual pathways of various plant hormone responses.In this study,we selected 479 genes that were convincingly associated with various hormone actions based on genetic evidence.By using these 479 genes as querie...  相似文献   

9.
Genetic approaches to understanding sugar-response pathways   总被引:15,自引:0,他引:15  
Plants as photoautotrophic organisms are able to produce the carbohydrates they require and have developed mechanisms to co-ordinate carbohydrate production and its metabolism. Carbohydrate-derived signals regulate the expression of genes involved in both photosynthesis and metabolism, and control carbohydrate partitioning. A number of genetic approaches have been initiated to understand sugar-response pathways in plants and identify the components involved. Screening strategies to date have been based on the effects of high sugar media on early seedling development or on changes in the enzyme activity or expression of sugar-responsive genes. These screens have established roles for plant hormones in sugar-response pathways, in particular for abscisic acid. The present emphasis on the role of plant hormones in sugar responses is due to the fact that mutants could be readily identified as belonging to these established pathways, but also results from the nature of the mutant screens in use. Progress is being made on the identification of mutants and genes that may be specific to sugar-signalling pathways. It is also expected that the modification of existing screens may target sugar-signalling pathways more directly. Genetic approaches may be especially useful in identifying components of novel signalling pathways unique to plants, and their combination with genomic and molecular approaches will guide future research.  相似文献   

10.
Hormone signalling from a developmental context   总被引:3,自引:0,他引:3  
The influence of hormones on plant growth and development has been clearly documented over the past 50 years. Now, with molecular genetics, the genes that convert changes in hormone levels into a cellular response are beginning to be identified. However, recent studies have demonstrated that the developmental context in which the hormones act plays a large influence on their synthesis and action. In this review, examples are given where known hormone response genes have been shown to have broader developmental roles as well as examples where genes that regulate developmental decisions, such as differentiation and fate, also influence hormone metabolism. The early conclusion of these studies is that an understanding of hormone signal transduction cannot be achieved in the absence of a developmental framework.  相似文献   

11.
Plant hormones are small molecules that play important roles throughout the life span of a plant,known as auxin,gibberellin,cytokinin,abscisic acid,ethylene,jasmonic acid,salicylic acid,and brassinosteroid.Genetic and molecular studies in the model organism Arabidopsis thaliana have revealed the individual pathways of various plant hormone responses.In this study,we selected 479 genes that were convincingly associated with various hormone actions based on genetic evidence.By using these 479 genes as queries,a genome-wide search for their orthoiogues in several species(microorganisms,plants and animals) was performed.Meanwhile,a comparative analysis was conducted to evaluate their evolutionary relationship.Our analysis revealed that the metabolisms and functions of plant hormones are generally more sophisticated and diversified in higher plant species.In particular,we found that several phytohormone receptors and key signaling components were not present in lower plants or animals.Meanwhile,as the genome complexity increases,the orthologne genes tend to have more copies and probably gain more diverse functions.Our study attempts to introduce the classification and phylogenic analysis of phytohormone related genes,from metabolism enzymes to receptors and signaling components,in different species.  相似文献   

12.
转基因技术生产无籽果实的新策略   总被引:5,自引:0,他引:5  
无籽果实具有许多优点 ,深受人们喜爱。传统无籽果实生产方法存在着诸如单性结实品种少、外用激素施用量不易掌握及四倍体品种较难获得等一系列问题。分子遗传研究表明 ,植物基因组中含有影响单性结实的基因 ,某些来自于细菌的基因也可在植物激素生物合成途径中起调节作用。应用这些目的基因 ,已建立了转基因生产无籽果实的新策略 ,如在种皮或子房特异性启动子控制下的生长素基因或细胞毒素基因的表达及“终止子”技术的运用等 ,这将大规模地促进蔬菜和水果生产 ,提高果蔬产品的市场价值。  相似文献   

13.
无籽果实具有许多优点,深受人们喜爱。传统无籽果实生产方法存在着诸如单性结实品种少、外用激素施用量不易掌握及四倍体品种较难获得等一系列问题。分子遗传研究表明,植物基因组中含有影响单性结实的基因,某些来自于细菌的基因也可在植物激素生物合成途径中起调节作用。应用这些目的基因,已建立了转基因生产无籽果实的新策略,如在种皮或子房特异性启动子控制下的生长素基因或细胞毒素基因的表达及“终止子”技术的运用等,这将大规模地促进蔬菜和水果生产,提高果蔬产品的市场价值。  相似文献   

14.
Plant hormones are a group of chemically diverse molecules that control virtually all aspects of plant development. Classical plant hormones were identified many decades ago in physiology studies that addressed plant growth regulation. In recent years, biochemical and genetic approaches led to the identification of many molecular components that mediate hormone activity, such as hormone receptors and hormone-regulated genes. This has greatly contributed to the understanding of the mechanisms underlying hormone activity and highlighted the intricate crosstalk and integration of hormone signalling and developmental pathways. Here we review and discuss recent findings on how hormones regulate the activity of shoot and root apical meristems.  相似文献   

15.
16.
17.
18.
19.
Numerous plant hormones interact during plant growth and development. Elucidating the role of these various hormones on particular tissue types or developmental stages has been difficult with exogenous applications or constitutive expression studies. Therefore, we used tissue-specific promoters expressing CKX1 and gai, genes involved in oxidative cytokinin degradation and gibberellin (GA) signal transduction, respectively, to study the roles of cytokinin and GA in male organ development. Accumulation of CKX1 in reproductive tissues of transgenic maize (Zea mays) resulted in male-sterile plants. The male development of these plants was restored by applications of kinetin and thidiazuron. Similarly, expression of gai specifically in anthers and pollen of tobacco (Nicotiana tabacum) and Arabidopsis resulted in the abortion of these respective tissues. The gai-induced male-sterile phenotype exhibited by the transgenic plants was reversible by exogenous applications of kinetin. Our results provide molecular evidence of the involvement of cytokinin and GA in male development and support the hypothesis that the male development is controlled in concert by multiple hormones. These studies also suggest a potential method for generating maintainable male sterility in plants by using existing agrochemicals that would reduce the expense of seed production for existing hybrid crops and provide a method to produce hybrid varieties of traditionally non-hybrid crops.  相似文献   

20.
Citrullus colocynthis (L.) Schrad, closely related to watermelon, is a member of the Cucurbitaceae family. This plant is a drought-tolerant species with a deep root system, widely distributed in the Sahara-Arabian deserts in Africa and the Mediterranean region. cDNA amplified fragment length polymorphism (cDNA-AFLP) was used to study differential gene expression in roots of seedlings in response to a 20% polyethylene glycol-(PEG8000) induced drought stress treatment. Eighteen genes which show similarity to known function genes were confirmed by quantitative relative (RQ) real-time RT-PCR to be differentially regulated. These genes are involved in various abiotic and biotic stress and developmental responses. Dynamic changes with tissue-specific pattern were detected between 0 and 48 h of PEG treatment. In general, the highest induction levels in roots occurred earlier than in shoots, because the highest expression was detected in roots following 4 and 12 h, in shoots following 12 and 48 h of drought. These drought-responsive genes were also affected by the plant hormones abscisic acid (ABA), salicylic acid (SA), or jasmonic acid (JA), indicating an extensive cross-talk between drought and plant hormones. Collectively, these results will be useful to explore the functions of these multiple signal-inducible genes for unveiling the relationship and crosstalk between different signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号