首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A continuous chain of hydrogen bonded groups, which forms cross-hands interaction between domains in molecules of pepsin-like enzymes, has been revealed. The chain contains a pair of 6 symmetrically related hydrogen bonds between main chain atoms and the two conserved water molecules. The peptide groups forming hydrogen bond with the inner oxygens of the active carboxyls are important elements of the chain. The so-called "fireman grip" hydrogen bonding, consisting of a pair of the two symmetrically related bonds, is an integral part of this system of interactions. One of the water molecules in this system has a zero accessibility and forms a very short hydrogen bond with the active site interacting peptide group. This chain connects tightly the two regions of domains which have a high correlation in conformational mobility. The retroviral enzymes have an abortive chain of the interdomain interaction in this region which is reduced to the "fireman grip" net.  相似文献   

2.
Evolution in the structure and function of aspartic proteases   总被引:22,自引:0,他引:22  
Aspartic proteases (EC3.4.23) are a group of proteolytic enzymes of the pepsin family that share the same catalytic apparatus and usually function in acid solutions. This latter aspect limits the function of aspartic proteases to some specific locations in different organisms; thus the occurrence of aspartic proteases is less abundant than other groups of proteases, such as serine proteases. The best known sources of aspartic proteases are stomach (for pepsin, gastricsin, and chymosin), lysosomes (for cathepsins D and E), kidney (for renin), yeast granules, and fungi (for secreted proteases such as rhizopuspepsin, penicillopepsin, and endothiapepsin). These aspartic proteases have been extensively studied for their structure and function relationships and have been the topics of several reviews or monographs (Tang: Acid Proteases, Structure, Function and Biology. New York: Plenum Press, 1977; Tang: J Mol Cell Biochem 26:93-109, 1979; Kostka: Aspartic Proteinases and Their Inhibitors. Berlin: Walter de Gruyter, 1985). All mammalian aspartic proteases are synthesized as zymogens and are subsequently activated to active proteases. Although a zymogen for a fungal aspartic protease has not been found, the cDNA structure of rhizopuspepsin suggests the presence of a "pro" enzyme (Wong et al: Fed Proc 44:2725, 1985). It is probable that other fungal aspartic proteases are also synthesized as zymogens. It is the aim of this article to summarize the major models of structure-function relationships of aspartic proteases and their zymogens with emphasis on more recent findings. Attempts will also be made to relate these models to other aspartic proteases.  相似文献   

3.
In addition to previous studies, 30 crystal structures of retroviral proteases corresponding to the highest resolution were inspected to analyze the interactions of the active carboxyl with surroundings groups. The outer oxygen of the active carboxyl in retroviral enzymes form contacts only with the water molecule participating in catalysis. This is an important difference between retroviral proteases and pepsin-like enzymes, which form a net of hydrogen bonds of these outer oxygen with residues neighboring the catalytic site in 3D structures. At the same time, it was found that in all aspartic proteases the inner oxygen of the active carboxyl are also involved in the chain of interactions through peptide groups Thr-Gly adjacent to the active residues. Polarization of these peptide groups influences the donor-acceptor properties of the active carboxyl. The found chain of interactions is more extensive in retroviral than in pepsin-like proteases; however, its main part is conserved for the whole class of these enzymes. Some implications of the role of these interactions are discussed.  相似文献   

4.
Targeting CAAX prenyl proteases of Leishmania donovani can be a good approach towards developing a drug molecule against Leishmaniasis. We have modeled the structure of CAAX prenyl protease I and II of L. donovani, using homology modeling approach. The structures were further validated using Ramachandran plot and ProSA. Active site prediction has shown difference in the amino acid residues present at the active site of CAAX prenyl protease I and CAAX prenyl protease II. The electrostatic potential surface of the CAAX prenyl protease I and II has revealed that CAAX prenyl protease I has more electropositive and electronegative potentials as compared CAAX prenyl protease II suggesting significant difference in their activity. Molecular docking with known bisubstrate analog inhibitors of protein farnesyl transferase and peptidyl (acyloxy) methyl ketones reveals significant binding of these molecules with CAAX prenyl protease I, but comparatively less binding with CAAX prenyl protease II. New and potent inhibitors were also found using structure-based virtual screening. The best docked compounds obtained from virtual screening were subjected to induced fit docking to get best docked configurations. Prediction of drug-like characteristics has revealed that the best docked compounds are in line with Lipinski’s rule. Moreover, best docked protein–ligand complexes of CAAX prenyl protease I and II are found to be stable throughout 20 ns simulation. Overall, the study has identified potent drug molecules targeting CAAX prenyl protease I and II of L. donovani whose drug candidature can be verified further using biochemical and cellular studies.  相似文献   

5.
Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae, have been chosen to detect complex formation and possible channeling, using molecular dynamics simulation. The enzymes were separated by 10 angstroms distance and placed in a water-filled box of size 173 x 173 x 173 angstroms. Three different orientations have been investigated. The two initial 3-phosphoglycerate substrate molecules near the active centers of the initial structure of PGM have been replaced with final product (2-phosphoglycerate) molecules, and 150 mM NaCl together with three Mg2+ ions have been added to the system to observe post-catalytic activity under near-physiological conditions. Analysis of interaction energies and conformation changes for 3 nsec simulation indicates that PGM and enolase do show binding affinity between their near active regions, which is necessary for channeling to occur. Interaction of the C-terminal residues Ala239 and Val240 of PGM (which partially "cap" the 2-phosphoglycerate) with enolase also favors the existence of channeling.  相似文献   

6.
Kashparov  I. V.  Russ  A. V.  Andreeva  N. S. 《Molecular Biology》2002,36(5):754-759
The method of molecular dynamics in explicit solvent was applied to test the hypothesis of the existence of a self-inhibited form of chymosin in solution. The paths and energies were calculated for chymosin in solution and in a crystalline environment. The modeling revealed that the intermolecular contacts of chymosin in crystal have negligible influence on the energy stabilization of its self-inhibited conformation. On the other hand, upon molecular dynamics simulation of the active and self-inhibited forms in solution their conformational energies proved to be quite close and the potential barrier between them relatively low. All this supports the possibility of chymosin to adopt spontaneously the self-inhibited conformation in solution, and indicates that it is one of the really existing enzyme forms rather than a crystal packing artifact. The results obtained open novel approaches to studying the specificity of chymosin as well as other aspartic proteinases.  相似文献   

7.
Singh  Chandra Jeet 《Mycopathologia》1998,143(3):147-150
Malbranchea gypsea IMI 338168 isolated from the soils of Keoladeo National Park, Bharatpur was studied for its ability to produce exocellular proteases on glucose – gelatin medium at pH 7; 28°C. The fungus was observed to be a potent producer of such enzymes. Protease production was optimal at 15 days of incubation. Asparagine was repressive to protease expression. No relationship existed between the amount of enzyme production and increase in biomass. Exogenous sugars suppressed enzyme production in descending order as follows: glucose > mannose > maltose > arabinose > fructose. The enzymes expressed showed the ability to degrade three keratinous substrate tested. Buffalo skin was the most actively degraded substrate when exogenous glucose was present, and was also the most resistant to degradation in the absence of glucose. The rate of keratin deterioration was independent of enzyme activity. Production of protease enzymes especially keratinases is ecologically important in a place like a National Park because such enzymes degrade keratinous detritus derived from mammals and birds. Accumulation of such materials can be a cause of pollution and can provide a breeding spot for various types of pathogens. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A comparative study of the conformation dynamics of the human alpha-fetoprotein fragment LDSYQCT and heptapeptides derived from it by point substitutions has revealed a significant influence of electrostatic interactions on the set of preferred conformations and dynamics of amino acid residues when the peptides with blocked termini are examined at ? = 1. Peptide flexibility rises when the termini are left free (charged). At ? = 10 or 80, the set of probable conformations for all residues expands to much the same extent, i.e., at higher permittivity of the medium the dynamic effects of amino acid changes are leveled off.  相似文献   

9.
Recent epigenomic studies have predicted thousands of potential enhancers in the human genome. However, there has not been systematic characterization of target promoters for these potential enhancers. Using H3K4me2 as a mark for active enhancers, we identified genome-wide EP interactions in human CD4+ T cells. Among the 6 520 long-distance chromatin interactions, we identify 2 067 enhancers that interact with 1 619 promoters and enhance their expression. These enhancers exist in accessible chromatin regions and are associated with various histone modifications and polymerase II binding. The promoters with interacting enhancers are expressed at higher levels than those without interacting enhancers, and their expression levels are positively correlated with the number of interacting enhancers. Interestingly, interacting promoters are co-expressed in a tissue-specific manner. We also find that chromosomes are organized into multiple levels of interacting domains. Our results define a global view of EP interactions and provide a data set to further understand mechanisms of enhancer targeting and long-range chromatin organization. The Gene Expression Omnibus accession number for the raw and analyzed chromatin interaction data is GSE32677.  相似文献   

10.
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin’s exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate–aromatic interactions including CH–π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.  相似文献   

11.
Human transthyretin (hTTR) is a multifunctional protein involved in several amyloidogenic diseases. Besides transportation of thyroxin and vitamin-A, its role towards the catalysis of apolipoprotein-A1 and Aβ-peptide are also drawing interest. The role of water molecules in the catalytic mechanism is still unknown. Extensive analyses of 14 high-resolution X-ray structures of human transthyretin and MD simulation studies have revealed the presence of eight conserved hydrophilic centres near its catalytic zone which may be indispensable for the function, dynamics and stability of the protein. Three water molecules (W1, W2 and W3) form a cluster and play an important role in the recognition of the catalytic and RBP-binding residues. They also induce the reorganisation of the His88 for coupling with other catalytic residues (His90, Glu92). Another water molecule (W5) participate in inter-monomer recognition between the catalytic and thyroxin binding sites. The rest four water molecules (W6, W*, W# and W?) form a distorted tetrahedral cluster and impart stability to the catalytic core of hTTR. The conserved water mediated recognition dynamics of the different functional sites may provide some rational clues towards the understanding of the activity and mechanism of hTTR.  相似文献   

12.
The phytohormones ethylene and auxin regulate many important processes in plants, including cell differentiation, cell expansion, and responses to abiotic stresses. These hormones also play important roles in many plant-pathogen interactions, including regulation of plant defense responses and symptom development. Sedentary plant-parasitic nematodes, which require the formation of a complex feeding site within the host root, are among the world’s most destructive plant pathogens. Nematode-induced feeding sites show dramatic changes in host cell morphology and gene expression. These changes are likely mediated, at least in part, by phytohormones. In the present review, current knowledge of the roles of ethylene and auxin will be explored in two main areas: the specific role of phytohormones in mediating feeding site development by plant-parasitic nematodes and the general role of phytohormones in affecting the ability of parasitic nematodes to cause disease. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 1, pp. 3–7. This article was presented in original.  相似文献   

13.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

14.
15.
The human Monoamine oxidase (hMAO) metabolizes several biogenic amine neurotransmitters and is involved in different neurological disorders. Extensive MD simulation studies of dopamine-docked hMAO B structures have revealed the stabilization of amino-terminal of the substrate by a direct and water-mediated interaction of catalytic tyrosines, Gln206, and Leu171 residues. The catechol ring of the substrate is stabilized by Leu171(C–H)?π(Dop)?(H–C) Ile199 interaction. Several conserved water molecules are observed to play a role in the recognition of substrate to the enzyme, where W1 and W2 associate in dopamine– FAD interaction, reversible dynamics of W3 and W4 influenced the coupling of Tyr435 to Trp432 and FAD, and W5 and W8 stabilized the catalytic Tyr188/398 residues. The W6, W7, and W8 water centers are involved in the recognition of catalytic residues and FAD with the N+- site of dopamine through hydrogen bonding interaction. The recognition of substrate to gating residues is made through W9, W10, and W11 water centers. Beside the interplay of water molecules, the catalytic aromatic cage has also been stabilized by π?water, π?C–H, and π?π interactions. The topology of conserved water molecular sites along with the hydration dynamics of catalytic residues, FAD, and dopamine has added a new feature on the substrate binding chemistry in hMAO B which may be useful for substrate analog inhibitor design.  相似文献   

16.
Adenylylation of Tyr-397 of each subunit of Escherichia coli glutamine synthetase (GS) down-regulates enzymatic activity in vivo. The overall structure of the enzyme consists of 12 subunits arranged as two hexamers, face to face. Research reported in this paper addresses the question of whether the covalently attached adenylyl group interacts with neighboring amino acid residues to produce the regulatory phenomenon. Wild-type GS has two Trp residues (positions 57 and 158) and the adenylylation site lies within 7-8 A of the Trp-57 loop in the adjacent subunit of the same hexameric ring; Trp-158 is about 35 A from the site of adenylylation. Fluorescence lifetimes and quantum yields have been determined for two fluorophores with wild-type and mutant GS. One fluorophore is epsilon-AMP adenylylated GS (at Tyr-397), and the other fluorophore is the intrinsic protein residue Trp-57. These experiments were conducted in order to detect possible intersubunit interactions between adenylyl groups and the neighboring Trp-57 to search for a role for the Trp-57 loop in the regulation of GS. The fluorescence due to epsilon-AMP of two adenylylated enzymes, wild-type GS and the W158F mutant, exhibits heterogeneous decay kinetics; the data adequately fit to a double exponential decay model with recovered average lifetime values of 18.2 and 2.1 ns, respectively. The pre-exponential factors range from 0.66 to 0.73 for the long lifetime component, at five emission wavelengths. The W57L-epsilon-AMP enzyme yields longer average lifetime values of 19.5 and 2.4 ns, and the pre-exponential factors range from 0.82 to 0.85 for the long lifetime component. An additional residue in the Trp-57 loop, Lys-58, has been altered and the K58C mutant enzyme has been adenylylated with epsilon-AMP on Tyr-397. Lys-58 is near the ATP binding site and may represent a link by which the adenylyl group controls the activity of GS. The fluorescence of epsilon-AMP-adenylylated K58C mutant GS is best described by a triple exponential decay with average recovered lifetime values of 19.9, 4.6, and 0.58 ns, with the largest fraction being the median lifetime component. Relative quantum yields of epsilon-AMP-Tyr-397 were measured in order to determine if static quenching occurs from adenine-indole stacking in the wild-type GS. The relative quantum yield of the epsilon-AMP-adenylylated W57L mutant is larger than the wild-type protein by the amount predicted from the difference in lifetime values: thus, no static quenching is evident.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
High level of hematopoietic cell kinase (Hck) is associated with drug resistance in chronic myeloid leukemia. Additionally, Hck activity has also been connected with the pathogenesis of HIV-1 and chronic obstructive pulmonary disease. In this study, three-dimensional (3D) QSAR pharmacophore models were generated for Hck based on experimentally known inhibitors. A best pharmacophore model, Hypo1, was developed with high correlation coefficient (0.975), Low RMS deviation (0.60) and large cost difference (49.31), containing three ring aromatic and one hydrophobic aliphatic feature. It was further validated by the test set (r?=?0.96) and Fisher’s randomization method (95%). Hypo 1 was used as a 3D query for screening the chemical databases, and the hits were further screened by applying Lipinski’s rule of five and ADMET properties. Selected hit compounds were subjected to molecular docking to identify binding conformations in the active site. Finally, the appropriate binding modes of final hit compounds were revealed by molecular dynamics (MD) simulations and free energy calculation studies. Hence, we propose the final three hit compounds as virtual candidates for Hck inhibitors.  相似文献   

18.
Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.  相似文献   

19.
Cobalt(II), copper(II) and nickel(II) complexes of the ligands 1,5,9-triazacyclotetradecane (tatd) and 1,5,9-triazacyclopentadecane (tapd), which have 8- and 9-membered chelate rings, respectively, have been prepared and characterised. Crystal structures of [Ni(tatd)(NCS)2]·H2O and [Co(tatd)(NCS)2] have been determined. The nickel(II) complex has a distorted square pyramidal geometry and the cobalt(II) complex has a distorted trigonal bipyramidal geometry. Agostic interactions between a hydrogen on the central carbon of the 8-membered chelate ring and the metal ion are observed in both complexes.  相似文献   

20.
Proteins with flexible binding surfaces can interact with numerous binding partners. However, this promiscuity is more difficult to understand in "rigid-body" proteins, whose binding results in little, or no, change in the position of backbone atoms. The binding of Kazal inhibitors to serine proteases is considered a classic case of rigid-body binding, although they bind to a wide range of proteases. We have studied the thermodynamics of binding of the Kazal serine protease inhibitor, turkey ovomucoid third domain (OMTKY3), to the serine protease subtilisin Carlsberg using isothermal titration calorimetry and have determined the crystal structure of the complex at very high resolution (1.1A). Comparison of the binding energetics and structure to other OMTKY3 interactions demonstrates that small changes in the position of side-chains can make significant contributions to the binding thermodynamics, including the enthalpy of binding. These effects emphasize that small, "rigid-body" proteins are still dynamic structures, and these dynamics make contributions to both the enthalpy and entropy of binding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号