首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pseudomonas aeruginosa was successfully transformed from a pyomelanin-producing strain to a non-pyomelanin-producing strain by genetic transformation, with an average frequency of 1.17 X 10-3/recipient. Although the transformation frequency was not affected by doses of DNA between 17 and 51 microgram/ml, it was influenced by the growth phase of the recipient bacteria, i.e., it was highest in the late logarithmic phase. Biochemical functions of the transformants were the same as those of the recipient strain except for pyomelanin production. Some of them, however, showed an intermediate growth behavior and cell arrangement between the donor and recipient. The serological type of the donor strain was sometimes contransduced although a few transformants became nonagglutinable with either donor or recipient type antiserum. The pyomelanin producing activity and serological type gained of some transformants were eliminated by either subculturing in nutrient broth or acridine treatment. The results obtained suggested that the pyomelanin productivity of P. aeruginosa is controlled by a plasmid.  相似文献   

3.
Simplified electroporation methodologies have been developed that reliably yield transformants with only minutes of effort. Neither DNA purification, cells in specific phase of growth, cell washing nor chilled cuvettes are required to obtain transformants. Electroporation can be used to transfer plasmid or chromosomal DNA directly from donor to recipient cells. This simplified direct method of electroporation has been demonstrated to work for both intra- as well as interspecies transformations using a variety of microorganisms. The use of electroporation to purify plasmid DNA was also investigated and found to be inferior to conventional plasmid isolation procedures.  相似文献   

4.
All six transformants obtained by inoculating fowl adenovirus type 1 (CELO virus) DNA or its fragments into a rat cell line of normal karyotype had more than 50 copy-equivalents of viral DNA sequences. Each of the transformants had almost all if not all of these viral DNA sequences clustered on a marker chromosome(s). Although the marker chromosome(s) differed from one cell line to another, viral DNA sequences preferentially clustered in or near the achromatic (or light-stained) region of the G-banded marker chromosomes where chromosomal rearrangement or translocation occurred. These results indicate that no particular chromosome is required to act as the integration site of viral DNA for the transformation of cells, but chromosomal rearrangement at or near the cluster of viral DNA sequences might contribute to the transformation.  相似文献   

5.
A small fraction (about 0.5%) of the transformants for a particular marker of B. subtilis (ilvA4; most probably a deletion) were found to be relatively unstable merodiploids. They possess a redundancy of the metB–ilvA chromosome segment. When their DNA is used as donor in transformation a merodiploid condition for the whole of this segment is created in all ilvA4+ transformants. For several of the duplicated loci both copies often are of recipient strain origin. Markers originally belonging to different copies of the diploidized region can be contransferred in PBS1-mediated transduction. The data are well in agreement with the hypothesis that the merodiploids carry a tandem duplication. An alternative hypothesis which does not call for integration of the exogenote within the recipient chromosome was also considered. Models are proposed for interpreting the segregation of the merodiploids, the transmission of the diploid state and its generation during transformation of the ilvA4 marker by wild-type DNA.  相似文献   

6.
We analysed chromosome replication patterns in the two hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus(Methanococcus) jannaschii by marker frequency analysis (MFA). For A. fulgidus, the central region of the chromosomal physical map displayed a higher relative abundance in gene dosage during exponential growth, with two continuous gradients to a region of lower abundance at the diametrically opposite side of the genome map. This suggests bidirectional replication of the A. fulgidus chromosome from a single origin. The organization of the putative replication origin region relative to the cdc6, mcm and DNA polymerase genes differed from that reported for Pyrococcus species. No single replication origin or termination regions could be identified for M. jannaschii, adding to the list of unusual properties of this organism. The organization of the A. fulgidus cell cycle was characterized by flow cytometry analysis of the samples from which genomic DNA was extracted for MFA. The relative lengths of the cell cycle periods were found to be similar to those of crenarchaea.  相似文献   

7.
1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse.  相似文献   

8.
When a DNA fragment containing a marker gene was ligated to random chromosomal fragments of Streptococcus pneumoniae and used to transform a recipient strain lacking that gene, the gene was integrated at various locations in the chromosome. Such ectopic integration was demonstrated for the malM gene, and its molecular basis was analyzed with defined donor molecules consisting of ligated fragments containing the malM and sul genes of S. pneumoniae. In a recipient strain deleted in the mal region of its chromosome, these constructs gave Mal+ transformants in which the malM and sul genes were now linked, with malM located between duplicate sul segments. Ectopic integration was unstable under nonselective conditions; mal(sul) ectopic insertions were lost at a rate of 0.05% per generation. Several possible mechanisms of ectopic integration were examined. The donor molecule is most likely to be a circular form of ligated homologous and nonhomologous fragments that, after entry into the cell, undergoes circular synapsis with the recipient chromosome at the site of homology, followed by repair and additive integration.  相似文献   

9.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

10.
A procedure was developed to isolate insertions of transposon Tn551 near other markers of interest on the chromosome of Staphylococcus aureus NCTC 8325. When an inoculum of strain 8325-4 carrying a thermosensitive mutant of plasmid pI258 (on which Tn551 resides) was inoculated into brain heart infusion agar plus erythromycin and grown to saturation at 43 degrees C, the transforming DNA extracted from this population of cells contained a random collection of different chromosomal insertions of Tn551; this DNA is referred to as pooled Tn551 DNA. When erythromycin-sensitive recipient strains containing chromosomal markers of interest were transformed with pooled Tn551 DNA, and the resulting Emr transformants were screened for coinheritance of the donor allele of the marker of interest, insertions of Tn551 were isolated near several markers, including fus-149, tet-3490, mec-4916, pig-131, ilv-129, pur-140, and uraA141. Many of the insertions were within the linkage groups that contained these markers, and several insertions occupied different positions between the linkage groups in heretofore undefined regions of the circular chromosomal map of S. aureus. These insertions of transposon Tn551 extend the known limits of the existing linkage groups, provide linkage data and map locations for markers not previously mapped, and provide a means to map markers which cannot be directly selected.  相似文献   

11.
Identification of a novel genetic element in Escherichia coli K-12.   总被引:45,自引:35,他引:10       下载免费PDF全文
Induction of the SOS repair processes of Escherichia coli K-12 caused a 14.4-kilobase species of circular deoxyribonucleic acid, called element e14, to be excised from the chromosome. To aid further characterization of this species, an 11.6-kilobase segment of e14 was inserted into the HindIII site of plasmid pBR313. To map e14 on the E. coli K-12 chromosome, the recombinant plasmid, pAG2, was used to transform a polA recipient, an event which required integration of pAG2 into the recipient chromosome. This recombinational event was dependent upon the region of homology between the incoming plasmid and the chromosome, as no transformants were scored when either a strain cured of the element was the recipient or pBR313 was the transforming deoxyribonucleic acid. Using these transformants, we have shown that e14 maps between the purB and pyrC loci near min 25. Several strains of E. coli K-12 were found to contain e14; however, one strain, Ymel trpA36, did not. In addition, e14 was found to be absent in both E. coli B/5 and E. coli C. The approach to mapping developed for this work could be used to map other fragments of E. coli deoxyribonucleic acid which have no known phenotype.  相似文献   

12.
《Gene》1996,169(1):85-90
We have developed a host-vector system for heterologous gene expression in Streptococcus gordonii (Sg) Challis (formerly Streptococcus sanguis), a commensal bacterium of the human oral cavity. The system is based on (i) integration of plasmid insertion vectors into the chromosome of specially engineered recipient hosts, and (ii) the use of the M6-protein-encoding gene (emm6) as a partner for construction of translational gene fusions. M6 is a streptococcal surface protein already proven useful as a fusion partner for the delivery of foreign antigens to the surface of Sg [Pozzi et al., Infect. Immun. 60 (1992) 1902–1907]. Insertion vectors carry a drug-resistance marker, different portions of emm6 and a multiple cloning site to allow construction of a variety of emm6-based fusions. Upon transformation of a recipient host with an insertion vector, 100% of transformants acquire both the drug-resistance marker and the capacity of displaying the M6 molecule on the cell surface. Chromosomal integration occurred at high frequency in recipient host GP1221. Transformation with 1 μg of insertion vector DNA yielded 8.1 x 105 transformants per ml of competent cells  相似文献   

13.
A plasmid containing a single cloned insertion of Haemophilus influenzae chromosomal deoxyribonucleic acid that carried a novobiocin resistance marker was 2.6 times larger than the parent plasmid, RSF0885, which conferred ampicillin resistance. The most frequent type of transformation by this plasmid (designated pNov1) was the transfer of novobiocin resistance to the chromosome, with the loss of the plasmid from the recipient. In accord with this observation, after radioactively labeled pNov1 entered a competent cell, it lost acid-insoluble counts, as well as biological activity. The level of ampicillin transformation, which involved establishment of the plasmid, was almost two orders of magnitude lower than the level of novobiocin transformation. Both types of transformation were depressed profoundly in rec-1 and rec-2 mutants. Ampicillin transformants of wild-type cells always contained plasmids that were the same size as pNov1, although most of these transformants were not novobiocin resistant. Plasmid pNov1 in wild-type cells but not in rec-1 or rec-2 cells often recombined with the chromosome, causing a homologous region of the chromosome to be substituted for part of the plasmid, as shown by restriction and genetic analyses. Our data suggested that plasmid-chromosome recombination took place only around the time when the plasmid entered a cell, rather than after it became established.  相似文献   

14.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

15.
Summary The mutation BT43 in the gene dnaB leads to the inhibition of vegetative and conjugational DNA synthesis at 42°. The consequences in case of conjugation are very unusual. The fragment of donor DNA tramsmitted to the recipient cell remains single-stranded and is integrated as such into the recipient chromosome similar to the main events during transformation. We call this process single-stranded (SS) conjugation.The evidence for this statement comes from the measurement of the time of expression of the gene tsx, containing the genetic information for the receptor of phage T6. The gene tsx is introduced into a dnaBT43 recipient cell alternatively by two different donors Hfr H and Hfr C, which are characterized by opposite directions of transfer. Therefore both donors introduce into the recipient cell alternatively the informational or noninformational DNA strand. If conjugation is performed at a nonpermissive temperature, the transferred DNA piece remains single-stranded and is integrated as such into the recipient chromosome. If it is the informational strand (case of Hfr H), it is transcribed very fast and yields the protein in question in about 20 min. If the noninformational strand is integrated (Hfr C) about 40 min additional time is required to effect cell division.SS-conjugation is very sensitive to the action of exonucleases Exo I and Exo V and is much enhanced in the absence of both nucleases in the recipient.The exogenous DNA pieces are integrated as short insertions, this leads to the disjoining of linked markers and to a very short scale of the genetic map. Because the donor DNA undergoes recombination in the single-stranded state heteroduplex regions originate which are subsequently corrected by the enzymes of the recipient cell. The situation leads to a very special but predictable heterogeneity of the progeny of transconjugants.The fact of the existence of this special process, SS-conjugation, drastically different from common conjugation in many respects, suggests that common conjugation leads to the integration of double-stranded DNA pieces into the recipient chromosome.  相似文献   

16.
Using Streptomyces coelicolor A3(2) protoplasts, the number of transformants obtained by homologous recombination of incoming double-stranded circular DNA with the recipient chromosome was greatly stimulated by simple denaturation of the donor DNA. This procedure was very effective with inserts over a ca. 100-fold size range, the largest tested being ca. 40-kb inserts in cosmids. These observations led to transformation experiments with linearized cloned DNA and randomly sheared genomic DNA. In both cases, DNA denaturation led to significant levels of transformation. Most of the transformants had resulted from the predicted homologous recombination events. A number of genetic manipulations will be made easier or possible by these procedures.  相似文献   

17.
18.
Hybrid cell lines were generated by microcell-mediated transfer of human chromosome 17 into rat recipient cells. The genotypes of 36 such lines were analyzed using a set of human chromosome 17-derived sequences to probe the structural integrity of the chromosome. Four classes of hybrids were obtained: clones with an apparently intact chromosome 17, clones containing large fragments of the chromosome including both the centromere and the selected marker, clones containing only the selected marker and flanking sequences, and clones containing two 17-derived fragments--the pericentric region plus the region of the selected marker. Data from these hybrids were used in conjunction with published regional localization information to obtain a provisional linear map of the chromosome. Results of this analysis are compared to the gene maps predicted from recent linkage studies and from other somatic cell hybrid experiments.  相似文献   

19.
Under optimal conditions, the cyanobacterium Anacystis nidulans R2 was transformed to ampicillin resistance at frequencies of greater than 10(7) transformants per microgram of plasmid (pCH1) donor DNA. No stringent period of competency was detected, and high frequencies of transformation were achieved with cultures at various growth stages. Transformation increased with time after addition of donor DNA up to 15 to 18 h. The peak of transformation efficiency (transformants/donor molecule) occurred at plasmid concentrations of 125 to 325 ng/ml with an ampicillin resistance donor plasmid (pCH1) and 300 to 625 ng/ml for chloramphenicol resistance conferred by plasmid pSG111. The efficiency of transformation was enhanced by excluding light during the incubation or by blocking photosynthesis with the electron transport inhibitor 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) or the uncoupler carbonyl cyanide-m-chlorophenyl hydrazone. Preincubation of cells in darkness for 15 to 18 h before addition of donor DNA significantly decreased transformation efficiency. Growth of cells in iron-deficient medium before transformation enhanced efficiency fourfold. These results were obtained with selection for ampicillin (pCH1 donor plasmid)- or chloramphenicol (pSG111 donor plasmid)-resistant transformants. Approximately 1,000 transformants per microgram were obtained when chromosomal DNA from an herbicide (DCMU)-resistant mutant was used as donor DNA. DCMU resistance was also transferred to recipient cells by using restriction fragments of chromosomal DNA from DCMU-resistant mutants. This procedure allowed size classes of fragments to be assayed for the presence of the DCMU resistance gene.  相似文献   

20.
The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower growing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 372-379, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号