首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The onset of autoimmune diseases is proposed to involve binding promiscuity of antibodies (Abs) and T‐cells, an often reported yet poorly understood phenomenon. Here, we attempt to approach two questions: first, is binding promiscuity a general feature of monoclonal antibodies (mAbs) and second, what is the molecular basis for polyspecificity? To this end, the anti‐cholera toxin peptide 3 (CTP3) mAb TE33 was investigated for polyspecific binding properties. Screening of phage display libraries identified two epitope‐unrelated peptides that specifically bound TE33 with affinities similar to or 100‐fold higher than the wild‐type epitope. Substitutional analyses revealed distinct key residue patterns recognized by the antibody suggesting a unique binding mode for each peptide. A database query with one of the consensus motifs and a subsequent binding study uncovered 45 peptides (derived from heterologous proteins) that bound TE33. To better understand the structural basis of the observed polyspecificity we modeled the new cyclic epitope in complex with TE33. The interactions between this peptide and TE33 suggested by our model are substantially different from the interactions observed in the X‐ray structure of the wild‐type epitope complex. However, the overall binding conformation of the peptides is similar. Together, our results support the theory of a general polyspecific potential of mAbs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The arginine-rich motif is a class of short arginine-rich peptides that bind to specific RNA structures that has been found to be a versatile framework for the design and selection of RNA-binding peptides. We previously identified novel peptides that bind to the Rev-response element (RRE) RNA of the HIV from an arginine-rich polypeptide library (ARPL) consisting of a polyarginine (15 mer) randomized at the N-terminal 10 positions. The selected peptides bound more strongly to the RRE than the natural binding partner, Rev, and contained glutamine residues that were assumed to be important for recognition of the G-A base pair. In addition, the peptides were predicted to bind to the RRE in an alpha-helical conformation. In this study, in order to understand the mechanism of the interaction between the RRE and the putative alpha-helical glutamine-containing peptides, the amino acid requirements for high affinity binding were analyzed by a combinatorial approach using a bacterial system for detecting RNA-peptide interactions. A consensus peptide, the DLA peptide, was elucidated, which consists of a single glutamine residue within a polyarginine context with the glutamine residue flanked at specific positions by three nonarginine residues, two of which appear to be important for alpha-helix stabilization. In addition, the DLA peptide was found to bind extremely tightly to the RRE with an affinity 50-fold higher than that of the Rev peptide as determined by a gel shift assay. A working model for the interaction of the DLA peptide to the RRE is proposed, which should aid in the development of peptide-based drugs that inhibit HIV replication, as well as in our understanding of polypeptide-RNA interactions. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Prostate-specific antigen (PSA) is a serine protease with highly prostate-specific expression. Measurement of PSA in serum is widely used for diagnosis and monitoring of prostate cancer. PSA dissolves the seminal gel forming after ejaculation. It has been suggested to mediate invasion and metastasis of prostate cancer but also to exert antiangiogenic activity. We have identified peptides specific for PSA by screening cyclic phage display peptide libraries. PSA-binding peptides were isolated from four different libraries and produced as a fusion protein with glutathione S-transferase (GST). The phage and fusion proteins were shown to bind to PSA specifically as indicated by lack of binding to other serine proteinases. A peptide with four cysteines showed the highest affinity for PSA. Zn2+, an inhibitor of PSA activity, increased the affinity of the peptides to PSA. The binding specificity was characterized by cross-inhibition using monoclonal anti-PSA antibodies of known epitope specificities. The peptides bound to the same region as mAbs specific for free PSA indicating that they bind close to the active site of the enzyme. The peptides enhanced the enzyme activity of PSA against a chromogenic substrate. These results show that peptides binding to PSA and modulating its enzyme activity can be developed by phage display technique. The peptides have the potential to be used for identification of PSA variants and for imaging and targeting of prostatic tumors.  相似文献   

4.
Large combinatorial libraries of random peptides have been used for a variety of applications that include analysis of protein-protein interactions, epitope mapping, and drug targeting. The major obstacle in screening these libraries is the loss of specific but low affinity binding peptides during washing steps. Loss of these specific binders often results in isolation of peptides that bind nonspecifically to components used in the selection process. Previously, it has been demonstrated that dimerizing or multimerizing a peptide can remarkably improve its binding kinetics by 10- to 1000-fold due to an avidity effect. To take advantage of this observation, we constructed a random library of 12 amino acid dimeric peptides on polyethylene glycol acrylamide (PEGA) beads by modifying the 'one-bead-one-compound' approach. The chemical synthesis of 100,000 peptides as dimers can be problematic due to steric and aggregation effects and the presence of many peptide sequences that are difficult to synthesize. We have designed a method, described in detail here, to minimize the problems inherent in the synthesis of a dimeric library by modifying the existing 'split and pool' synthetic method. Using this approach the dimeric library was used to isolate a series of peptides that bound selectively to epithelial cancer cells. One peptide with the amino acid sequence QMARIPKRLARH bound as a dimer to prostate cancer cells spiked into the blood but did not bind to circulating hematopoeitic cells. The monomeric form of this peptide, however, did not bind well to the same LNCaP cell line. These data demonstrate that "hits" obtained from such a 'one-bead-one-dimer' library can be used directly for the final application or used as leads for construction of second generation libraries.  相似文献   

5.
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of ‘one‐bead‐one‐peptide’ combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4‐hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc‐Asp[2‐phenylisopropyl (OPp)]‐OH to Ala‐Gly‐oxymethylbenzamide‐ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N‐terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N‐Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one‐bead‐one‐cyclic depsipeptide libraries that can be easily open for its sequencing by matrix‐assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0+/-1.6% of the random dodecapeptides and 7.9+/-2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usage patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a beta-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.  相似文献   

7.
The bidentate metal binding amino acid bipyridylalanine (BpyAla) was incorporated into a disulfide linked cyclic peptide phage displayed library to identify metal ion binding peptides. Selection against Ni2+–nitrilotriacetic acid (NTA) enriched for sequences containing histidine and BpyAla. BpyAla predominated when selections were carried out at lower pH, consistent with the differential pKa’s of histidine and BpyAla. Two peptides containing BpyAla were synthesized and found to bind Ni2+ with low micromolar dissociation constants. Incorporation of BpyAla and other metal binding amino acids into peptide and protein libraries should enable the evolution of novel binding and catalytic activities.  相似文献   

8.
Peng ZH 《Biopolymers》1999,49(7):565-574
Selectively addressable topological templates represent a key feature in the de novo design of proteins using the TASP concept (Template Assembled Synthetic Proteins). The regioselectively addressable (orthogonally protected) lysine-containing cyclic templates are especially interesting for combinatorial chemistry. We report the synthesis and structural analysis of a series of cyclic and bicyclic decapeptide templates (model of TASP molecules). The peptides were synthesized via solid phase synthesis and followed by solution cyclization. The conformation of the peptides was studied by proton nmr spectroscopy in dimethylsulfoxide and in trifluoroethanol/water. The structure of the peptide template was calculated with the program DIANA and followed by simulated annealing from the nmr experimental constraints. The peptides adopts a fold comprising two beta-strands and two type II beta-turns predicted for conformationally well-defined templates. The design of such a restained cyclic decapeptide template will be discussed along with Regioselectively Addressable Functionalized Template (RAFT) molecular recognition and template for combinatorial synthesis.  相似文献   

9.
Five linear analogs of GnRH containing a p-aminophenylalanine (Pap) residue in their sequence and their six corresponding azo-bridged cyclic derivatives were synthesized. The precyclic peptides were prepared on solid-support, while azo-cyclization was performed in solution by diazotization of the p-aminophenylalanine residue followed by intramolecular coupling of the formed diazo salt with either tyrosine or histidine side chains present in the sequence. All peptides were examined for their binding ability to the GnRH receptor expressed on rat pituitary membranes and for their LH-release activity from dispersed rat pituitary cells. Linear analogs 1 i.e [Pap(5)] GnRH and 3, i.e. [Tyr(3), Pap(5)] GnRH, were found to bind to the GnRH receptors only slightly less avidly than native GnRH. Their cyclization, however, led to a marked reduction in the binding capacity, i.e. from IC(50) of 10(-9) M to the 10(-7) M range, and in biopotency, i.e. LH-release. All other linear and cyclic peptides were found to bind selectively to the GnRH receptor only in the low microM range. Only peptide 1 was found comparable to native GnRH in respect to LH-release activity and thus may potentially be a good agonist of the parent peptide. Peptides 1-4, the most potent GnRH receptor binders, were examined for their conformational properties using CD. Cyclic-azo peptides 2 and 4 were further evaluated by NMR spectroscopy in solution combined with molecular modeling. The structural information obtained explains in part the GnRH-like biological activity observed.  相似文献   

10.
In various western countries, subtype P1.4 of Neisseria meningitidis serogroup B causes the greatest incidence of meningococcal disease. To investigate the molecular recognition of this subtype, we crystallised a peptide (P1HVVVNNKVATH(P11)), corresponding to the subtype P1.4 epitope sequence of outer membrane protein PorA, in complex with a Fab fragment of the bactericidal antibody MN20B9.34 directed against this epitope. Structure determination at 1.95 A resolution revealed a unique complex of one P1.4 antigen peptide bound to two identical Fab fragments. One Fab recognises the putative epitope residues in a 2:2 type I beta-turn at residues P5NNKV(P8), whereas the other Fab binds the C-terminal residues of the peptide that we consider a crystallisation artefact. Interestingly, recognition of the P1.4 epitope peptide is mediated almost exclusively through the complementarity-determining regions of the heavy chain. We exploited the observed turn conformation for designing conformationally restricted cyclic peptides for use as a peptide vaccine. The conformational stability of the two peptide designs was assessed by molecular dynamics simulations. Unlike the linear peptide, both cyclic peptides, conjugated to tetanus toxoid as a carrier protein, elicited antibody responses in mice that recognised meningococci of subtype P1.7-2,4. Serum bactericidal assays showed that some, but not all, of the sera induced with the cyclic peptide conjugates could activate the complement system with titres that were very high compared to the titres induced by complete PorA protein in its native conformation administered in outer membrane vesicles.  相似文献   

11.
Discovery of high-affinity peptide ligands for vancomycin   总被引:1,自引:0,他引:1  
Yao N  Wu CY  Xiao W  Lam KS 《Biopolymers》2008,90(3):421-432
Vancomycin, an important antibiotic against medically relevant gram-positive bacteria such as methicillin-resistant Staphylococcus aureus, exerts its antibacterial effects by binding with moderate affinity to the C-terminal Lys-D-Ala-D-Ala motif (Kaa) of the bacterial cell wall peptide precursor. Essential for Kaa binding to vancomcyin is the free-carboxyl group on the terminal D-Ala in Kaa. In efforts to identify other Kaa-based peptides which bind vancomycin with higher affinity, we utilized our one-bead-one-compound (OBOC) combinatorial library approach, a method which has been widely used to discover highly specific ligands against various receptors. In standard OBOC peptide libraries, the C-terminal end of the synthesized peptide is tethered to a solid-support/resin, however, this study reports development of a synthetic strategy for generating OBOC peptide libraries with a free D-Ala-D-Ala carboxyl end. We screened these "OBOC inverted" peptide libraries against vancomycin, and discovered a series of peptide ligands with strong consensus, which bind vancomycin. To further optimize these ligands, two highly focused Kaa-containing OBOC combinatorial peptidomimetic libraries were designed, synthesized, and screened against vancomycin under more stringent conditions. Peptidomimetic ligands which bind vancomycin with higher affinity than Kaa were identified. The dissociation constant of one of these ligands, Lys(Ac)-HOCit-Glu-Cha-Lys(3,5-dihydroxybenzoyl)-D-Ala-D-Ala (9), as determined by surface plasmon resonance, was 1.03 microM, roughly a 50-fold improvement in affinity compared to Kaa (K(D) = 50 microM).  相似文献   

12.
Receptor-derived peptides have played an important role in elucidating chemokine-receptor interactions. For the inflammatory chemokine CXC-class chemokine ligand 8 (CXCL8), a site II-mimetic peptide has been derived from parts of extracellular loops 2 and 3 and adjacent transmembrane helices of its receptor CXC-class chemokine receptor 1 (Helmer et al., RSC Adv., 2015, 5 , 25657). The peptide sequence with a C-terminal glutamine did not bind to CXCL8, whereas one with a C-terminal glutamate did but with low micromolar affinity. We sought to improve the affinity and protease stability of the latter peptide through cyclization while also cyclizing the former for control purposes. To identify a cyclization strategy that permits a receptor-like interaction, we conducted a molecular dynamics simulation of CXCL8 in complex with full-length CXC-class chemokine receptor 1. We introduced a linker to provide an appropriate spacing between the termini and used an on-resin side-chain-to-tail cyclization strategy. Upon chemokine binding, the fluorescence intensity of the tetramethylrhodamine (TAMRA)-labeled cyclic peptides increased whereas the fluorescence anisotropy decreased. Additional molecular dynamics simulations indicated that the fluorophore interacts with the peptide macrocycle so that chemokine binding leads to its displacement and observed changes in fluorescence. Macrocyclization of both 18-amino acid-long peptides led to the same low micromolar affinity for CXCL8. Likewise, both TAMRA-labeled linear peptides interacted with CXCL8 with similar affinities. Interestingly, the linear TAMRA-labeled peptides were more resistant to tryptic digestion than the unlabeled counterparts, whereas the cyclized peptides were not degraded at all. We conclude that the TAMRA fluorophore tends to interact with peptides altering their protease stability and behavior in fluorescence-based assays.  相似文献   

13.
A common assumption about peptide binding to the class I MHC complex is that each residue in the peptide binds independently. Based on this assumption, modifications in class I MHC anchor positions were used to improve the binding properties of low-affinity peptides (termed altered peptide ligands), especially in the case when tumor-associated peptides are used for immunotherapy. Using a new molecular tool in the form of recombinant Abs endowed with Ag-specific MHC-restricted specificity of T cells, we show that changes in the identity of anchor residues may have significant effects, such as altering the conformation of the peptide-MHC complex, and as a consequence, may affect the TCR-contacting residues. We herein demonstrate that the binding of TCR-like recombinant Abs, specific for the melanoma differentiation Ag gp100 T cell epitope G9-209, is entirely dependent on the identity of a single peptide anchor residue at position 2. An example is shown in which TCR-like Abs can recognize the specific complex only when a modified peptide, G9-209-2 M, with improved affinity to HLA-A2 was used, but not with the unmodified natural peptide. Importantly, these results demonstrate, using a novel molecular tool, that modifications at anchor residues can dramatically influence the conformation of the MHC peptide groove and thus may have a profound effect on TCR interactions. Moreover, these results may have important implications in designing modifications in peptides for cancer immunotherapy, because most such peptides studied are of low affinity.  相似文献   

14.
《The Journal of cell biology》1995,130(5):1189-1196
Many integrins recognize short RGD-containing amino acid sequences and such peptide sequences can be identified from phage libraries by panning with an integrin. Here, in a reverse strategy, we have used such libraries to isolate minimal receptor sequences that bind to fibronectin and RGD-containing fibronectin fragments in affinity panning. A predominant cyclic motif, *CWDDG/LWLC*, was obtained (the asterisks denote a potential disulfide bond). Studies using the purified phage and the corresponding synthetic cyclic peptides showed that *CWDDGWLC*-expressing phage binds specifically to fibronectin and to fibronectin fragments containing the RGD sequence. The binding did not require divalent cations and was inhibited by both RGD and *CWDDGWLC*-containing synthetic peptides. Conversely, RGD-expressing phage attached specifically to immobilized *CWDDGWLC*-peptide and the binding could be blocked by the respective synthetic peptides in solution. Moreover, fibronectin bound to a *CWDDGWLC*-peptide affinity column, and could be eluted with an RGD-containing peptide. The *CWDDGWLC*-peptide inhibited RGD-dependent cell attachment to fibronectin and vitronectin, but not to collagen. A region of the beta subunit of RGD-binding integrins that has been previously demonstrated to be involved in ligand binding includes a polypeptide stretch, KDDLW (in beta 3) similar to WDDG/LWL. Synthetic peptides corresponding to this region in beta 3 were found to bind RGD-displaying phage and conversion of its two aspartic residues into alanines greatly reduced the RGD binding. Polyclonal antibodies raised against the *CWDDGWLC*- peptide recognized beta 1 and beta 3 in immunoblots. These data indicate that the *CWDDGWLC*-peptide is a functional mimic of ligand binding sites of RGD-directed integrins, and that the structurally similar site in the integrin beta subunit is a binding site for RGD.  相似文献   

15.
Monoclonal antibody (mAb) 5D10 is directed against the human breast cancer cell line MCF-7. Biochemical characterization of the antibody epitope was attempted and revealed a complex, most likely carbohydrate-linked nature, which prevented isolation and further studies of the interaction. A major goal of this work was to generate structural mimics of the 5D10 epitope to serve as putative substitutes in such studies. A peptide library displayed on filamentous phage was used to select for mimotope peptide sequences. All positive phage clones selected from the library displayed the amino acid sequence H(2)N-QMNPMYYR-CO(2)H. This peptide sequence, as well as a branched form of the peptide, was found to bind mAb 5D10. Moreover, both peptide sequences were able to inhibit the binding of 5D10 to the MCF-7 cells in a concentration-dependent manner, with an EC(50) value in the range of 65 microM. According to these results, random phage peptide libraries can serve to identify mimotopic peptides for unknown complex cell surface epitopes.  相似文献   

16.
An HLA-B27-restricted self-octapeptide known to react with an alloreactive T-cell receptor has been modified by systematic substitution of a beta-amino acid for the natural alpha-amino acid residue, over the whole length of the parent epitope. All modified peptides were shown to bind to recombinant HLA-B*2705 and induce stable major histocompatibility complex-peptide complexes, but with some variation depending on the position of the beta-amino acid on the peptide sequence. Alteration of the natural peptide sequence at the two N-terminal positions (positions 1 and 2) decreases binding affinity and thermodynamic stability of the refolded complex, but all other positions (from position 3 to the C-terminal residue) were insensitive to the beta-amino acid substitution. All modified peptides were recognized by an alloreactive T-cell clone specific for the parent epitope with decreased efficiency, to an extent dependent of the position that was modified. Furthermore, the introduction of a single beta-amino acid at the first two positions of the modified peptide was shown to be sufficient to protect them against enzymatic cleavage. Thus, beta-amino acids represent new interesting templates for alteration of T-cell epitopes to design either synthetic vaccines of T-cell receptor antagonists.  相似文献   

17.
The mechanism of recognition of proteins and peptides by antibodies and the factors determining binding affinity and specificity are mediated by essentially the same features. However, additional effects of the usually unfolded and flexible solution structure of peptide ligands have to be considered. In an earlier study we designed and optimized six peptides (pepI to pepVI) mimicking the discontinuous binding site of interleukin-10 for the anti-interleukin-10 monoclonal antibody (mab) CB/RS/1. Three of them were selected for analysis of their solution conformation by circular dichroism measurements. The peptides differ in the content of alpha-helices and in the inducibility of helical secondary structures by trifluoroethanol. These properties, however, do not correlate with the binding affinity. PepVI, a 32-mer cyclic epitope mimic, has the highest affinity to mab CB/RS/1 identified to date. CD difference spectroscopy suggests an increase of the alpha-helix content of pepVI with complex formation. Binding of pepVI to mab CB/RS/1 is characterized by a large negative, favorable binding enthalpy and a smaller unfavorable loss of entropy (DeltaH degrees = -16.4 kcal x mol(-1), TDeltaS degrees = -6.9 kcal x mol(-1)) resulting in DeltaG degrees = -9.5 kcal x mol(-1) at 25 degrees C as determined by isothermal titration calorimetry. Binding of pepVI is enthalpically driven over the entire temperature range studied (10-35 degrees C). Complex formation is not accompanied by proton uptake or release. A negative heat capacity change DeltaC(p) of -0.354 kcal x mol(-1) x K(-1) was determined from the temperature dependence of DeltaH degrees. The selection of protein mimics with the observed thermodynamic properties is promoted by the applied identification and iterative optimization procedure.  相似文献   

18.
Saccharopepsin is a vacuolar aspartic proteinase involved in activation of a number of hydrolases. The enzyme has great structural homology to mammalian aspartic proteinases including human renin and we have used it as a model system to study the binding of renin inhibitors by X-ray crystallography. Five medium-to-high resolution structures of saccharopepsin complexed with transition-state analogue renin inhibitors were determined. The structure of a cyclic peptide inhibitor (PD-129,541) complexed with the proteinase was solved to 2.5 A resolution. This inhibitor has low affinity for human renin yet binds very tightly to the yeast proteinase (K(i)=4 nM). The high affinity of this inhibitor can be attributed to its bulky cyclic moiety spanning P(2)-P(3)' and other residues that appear to optimally fit the binding sub-sites of the enzyme. Superposition of the saccharopepsin structure on that of renin showed that a movement of the loop 286-301 relative to renin facilitates tighter binding of this inhibitor to saccharopepsin. Our 2.8 A resolution structure of the complex with CP-108,420 shows that its benzimidazole P(3 )replacement retains one of the standard hydrogen bonds that normally involve the inhibitor's main-chain. This suggests a non-peptide lead in overcoming the problem of susceptible peptide bonds in the design of aspartic proteinase inhibitors. CP-72,647 which possesses a basic histidine residue at P(2), has a high affinity for renin (K(i)=5 nM) but proves to be a poor inhibitor for saccharopepsin (K(i)=3.7 microM). This may stem from the fact that the histidine residue would not bind favourably with the predominantly hydrophobic S(2) sub-site of saccharopepsin.  相似文献   

19.
Specificities of three mouse major histocompatibility complex (MHC) class I molecules, Kb, Db, and Ld, were analyzed by positional scanning using combinatorial peptide libraries. The result of the analysis was used to create a scoring program to predict MHC-binding peptides in proteins. The capacity of the scoring was then challenged with a number of peptides by comparing the prediction with the experimental binding. The score and the experimental binding exhibited a linear correlation but with substantial deviations of data points. Statistically, for approximately 80% of randomly chosen peptides, MHC-binding capacity could be predicted within one log concentration of peptides for a half-maximal binding. Known cytotoxic T-lymphocyte epitope peptides could be predicted, with a few exceptions. In addition, frequent findings of MHC-binding peptides with incomplete or no anchor amino acid(s) suggested a substantial bias introduced by natural antigen processing in peptide selection by MHC class I molecules.  相似文献   

20.
Human monoclonal antibody 2F5 is one of a few human antibodies that neutralize a broad range of HIV-1 primary isolates. The 2F5 epitope on gp41 includes the sequence ELDKWA, with the core residues, DKW, being critical for antibody binding. HIV-neutralizing antibodies have never been elicited by immunization with peptides bearing ELDKWA, suggesting that important part(s) of the 2F5 paratope remain unidentified. The use of longer peptides extending beyond ELDKWA has resulted in increased epitope antigenicity, but neutralizing antibodies have not been generated. We sought to develop peptides that bind to 2F5, and that function as specific probes of the 2F5 paratope. Thus, we used 2F5 to screen a set of phage-displayed, random peptide libraries. Tight-binding clones from the random peptide libraries displayed sequence variability in the regions flanking the DKW motif. To further reveal flanking regions involved in 2F5 binding, two semi-defined libraries were constructed having 12 variegated residues either N-terminal or C-terminal to the DKW core (X(12)-AADKW and AADKW-X(12), respectively). Three clones isolated from the AADKW-X(12) library had similar high affinities, despite a lack of sequence homology among them, or with gp41. The contribution of each residue of these clones to 2F5 binding was evaluated by Ala substitution and amino acid deletion studies, and revealed that each clone bound 2F5 by a different mechanism. These results suggest that the 2F5 paratope is formed by at least two functionally distinct regions: one that displays specificity for the DKW core epitope, and another that is multispecific for sequences C-terminal to the core epitope. The implications of this second, multispecific region of the 2F5 paratope for its unique biological function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号