首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Biopsy specimens of human gastric mucosa of patients with gastric complaints and subjected to endoscopic examination were cultured microaerobically, and Campylobacter pyloridis was detected in 46 out of 80 cases (57.5%). The organism was found in 13 out of 22 patients with gastritis, 11 out of 16 with gastric ulcer scar, 7 out of 16 with gastric ulcer, 3 out of 9 with gastric polyp, 4 out of 5 with gastric carcinoma, 2 out of 2 with esophagus carcinoma, and 6 out of 9 with other gastric diseases. The isolates were identified as C. pyloridis, demonstrating its characteristic features such as positive for oxidase and catalase, negative for reduction of nitrite and nitrate, positive for urease, no growth at 25 C, growth at 37 C, not tolerant to 1% glycine, and resistant to nalidixic acid. Positive alkaline phosphatase activity was considered as an additional feature characteristic for the strains of C. pyloridis. The major cellular fatty acids were tetradecanoic acid and 19-carbon-cyclopropane acid. This pattern is unique among Campylobacter species. The survival of the organism for a longer period than 60 min at pH 2.5 indicates its significant resistance to acidic environment.  相似文献   

3.
The stomach is in a state of continuous exposure to potentially hazardous agents. Hydrochloric acid together with pepsin constitutes a major and serious threat to the gastric mucosa. Reflux of alkaline duodenal contents containing bile and pancreatic enzymes are additional important injurious factors of endogenous origin. Alcohol, cigarette smoking, drugs and particularly aspirin and aspirin-like drugs, and steroids are among exogenous mucosal irritants that can inflict mucosal injury. The ability of the stomach to defend itself against these noxious agents has been ascribed to a number of factors constituting the gastric mucosal defense. These include mucus and bicarbonate secreted by surface epithelial cells, prostaglandins, sulfhydryl compounds and gastric mucosal blood flow. The latter is considered by several researchers to be of paramount importance in maintaining gastric mucosal integrity. The aim of this paper is to review the experimental and clinical data dealing with the role of mucosal blood flow and in particular the microcirculation in both damage and protection of the gastric mucosa.  相似文献   

4.
This review assesses the importance of proteostasis in skeletal muscle maintenance with a specific emphasis on autophagy. Skeletal muscle appears to be particularly vulnerable to genetic defects in basal and induced autophagy, indicating that autophagy is co-substantial to skeletal muscle maintenance and adaptation. We discuss emerging evidence that tension-induced protein unfolding may act as a direct link between mechanical stress and autophagic pathways. Mechanistic links between protein damage, autophagy and muscle hypertrophy, which is also induced by mechanical stress, are still poorly understood. However, some mouse models of muscle disease show ameliorated symptoms upon effective targeting of basal autophagy. These findings highlight the importance of autophagy as therapeutic target and suggest that elucidating connections between protein unfolding and mTOR-dependent or mTOR-independent hypertrophic responses is likely to reveal specific therapeutic windows for the treatment of muscle wasting disorders.  相似文献   

5.
Lam EK  Tai EK  Koo MW  Wong HP  Wu WK  Yu L  So WH  Woo PC  Cho CH 《Life sciences》2007,80(23):2128-2136
The gastric mucosa is frequently exposed to different exogenous and endogenous ulcerative agents. Alcoholism is one of the risk factors for the development of mucosal damage in the stomach. This study aimed to assess if a probiotic strain Lactobacillus rhamnosus GG (LGG) is capable of protecting the gastric mucosa from acute damage induced by intragastric administration of ethanol. Pre-treatment of rats with LGG at 10(9) cfu/ml twice daily for three consecutive days markedly reduced ethanol-induced mucosal lesion area by 45%. LGG pre-treatment also significantly increased the basal mucosal prostaglandin E(2) (PGE(2)) level. In addition, LGG attenuated the suppressive actions of ethanol on mucus-secreting layer and transmucosal resistance and reduced cellular apoptosis in the gastric mucosa. It is suggested that the protective action of LGG on ethanol-induced gastric mucosal lesions is likely attributed to the up-regulation of PGE(2), which could stimulate the mucus secretion and increase the transmucosal resistance in the gastric mucosa. All these would protect mucosal cells from apoptosis in the stomach.  相似文献   

6.
Partial sleep deprivation compromises gastric mucosal integrity in rats   总被引:5,自引:0,他引:5  
Guo JS  Chau JF  Cho CH  Koo MW 《Life sciences》2005,77(2):220-229
The gastric mucosa is most susceptible to stress that has been shown to induce mucosal damage in humans and animals. This study aims to explore the underlying mechanisms of partial sleep deprivation, as a source of psychophysiological stress, on gastric functions and its effect on mucosal integrity. Sprague-Dawley rats were partially sleep deprived (PSD) for 7 or 14 days by housing inside slowly rotating drums. Gastric tissues and plasma were sampled at the end of the sleep deprivation periods and mucosal lesion scores were evaluated. Morphological examination was performed after Hematoxylin and Eosin staining. Plasma levels of noradrenaline, adrenaline, gastrin, histamine and somatostatin were determined with enzyme immunoassays. Gastric acidity was measured with acid-base titration in pylorus ligated rats. Gastric mucosal blood flow was evaluated with Laser Doppler Flowmetry. It was found that gastric lesions were induced in about 30%-50% of the PSD rats. Gastric acidity as well as plasma levels of noradrenaline, gastrin and histamine were elevated. Gastric mucosal blood flow and plasma somatostatin level were on the contrary reduced, especially in rats with PSD for 14 days. It is concluded that partial sleep deprivation compromises gastric mucosal integrity by increasing gastric acidity, plasma levels of noradrenaline, gastrin, histamine, and decreasing gastric mucosal blood flow. These results provided experimental evidence on the gastric damaging effects of PSD and it could be one of the risk factors contributing to gastric ulcer formation.  相似文献   

7.
The outer membrane and surface exposed proteins of four strains of the gastric Campylobacter-like organism Campylobacter pyloridis were identified by SDS-PAGE of Sarkosyl-insoluble membranous material and 125I-surface-labelled whole bacteria. Although constant outer membrane proteins (molecular mass 61, 54 and 31 kDa) were observed in these strains, several variable 125I-labelled surface proteins were detected. C. pyloridis does not appear to express a single surface-exposed major outer membrane protein like that of C. jejuni and C. coli. Putative flagella proteins were identified from isolated flagella and acid-extractable surface material and by immunoblotting with anti-flagella antibodies. Several major protein antigens were observed by immunoblotting with anti-C. pyloridis antisera. At least two of these antigens cross-reacted with anti-C. jejuni antiserum. This cross-reaction appears to be caused primarily by flagellar antigens. However, one major protein antigen (61 kDa) was not cross-reactive with C. jejuni and may, therefore, be useful in serological tests for the specific diagnosis of C. pyloridis infections.  相似文献   

8.
9.
The acid-secreting gastric mucosa resists intraluminal acid better than the nonsecreting. Here we investigated pH at the epithelial cell surface, mucosal permeability, and blood flow during intraluminal administration of acid (100 mM) in acid-stimulated and nonstimulated gastric corpus mucosae. Surface pH (H(+)-selective microelectrodes), permeability (clearance of (51)Cr-EDTA), and mucosal blood flow (laser-Doppler flowmetry) were studied in Inactin-anesthetized rats. Acid secretion was stimulated with pentagastrin (40 microg. kg(-1). h(-1)) or impromidine (500 microg. kg(-1). h(-1)), or HCO(3)(-) (5 mmol. kg(-1). h(-1)) given intravenously. Surface pH was only slightly reduced by intraluminal acid in acid secretion-stimulated or HCO(3)(-)-treated rats but was substantially lowered in nonstimulated rats. Clearance increased threefold and blood flow increased by approximately 75% in nonstimulated rats. During stimulated acid secretion or intravenous infusion of HCO(3)(-), clearance was unchanged and blood flow increased by only approximately 30% during intraluminal acid. Increased epithelial transport of HCO(3)(-) buffering the mucus gel is most probably the explanation for the acid-secreting mucosa being less vulnerable to intraluminal acid than the nonsecreting.  相似文献   

10.
Gastrin, PGs, and growth factors have important roles in maintaining gastrointestinal mucosal integrity. Cyclooxygenases (COX-1 and COX-2) are the key enzymes involved in PG synthesis. This study aimed to clarify the mechanisms of gastric mucosal protection by gastrin. Fasted rats were administered subcutaneous gastrin 17 with or without gastrin receptor antagonist YM022 pretreatment. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and COX-2 expression were examined using Western blot analysis. Another series of experiments investigated 1) PGE(2) levels in gastric mucosa, 2) the protective action of gastrin against gastric damage by acidified ethanol, 3) the effects of a specific HB-EGF-neutralizing antibody on gastrin-induced COX-2 expression, and 4) the effects of a specific COX-2 inhibitor NS-398 on PGE(2) synthesis and the mucosal protection afforded by gastrin. Gastrin dose-dependently increased HB-EGF, COX-2 expression, and PGE(2) levels and reduced gastric damage. However, pretreatment with YM022 dose-dependently abolished such effects of gastrin. A specific HB-EGF- neutralizing antibody and an EGF receptor inhibitor decreased gastrin-induced COX-2 expression. NS-398 blocked gastrin-induced PGE(2) synthesis and mucosal protection. In conclusion, this study demonstrates that gastrin enhances gastric mucosal integrity through COX-2, which is partially mediated by HB-EGF, and PGE(2) upregulation in rats.  相似文献   

11.
用MLE无血培养基与MHC(M-H血巧克力琼脂)培养基同时进行已知幽门弯曲菌(Cp)的培养及胃粘膜活检标本中Cp的分离试验。结果表明,16株已知菌在MLE培养基上生长的菌落比MHC上丰茂,特点明显,两者的菌体形态及生化反应一致。200份胃粘膜活检标本用MLE培养基分离阳性者114例,阳性率为57.0%,用MHC分离阳性者101例,阳性率为50.5%,符合率为86.5%,分离阳性率MLE高于MHC(p<0.05)。我们认为MLE无血培养基可代替含血培养基用于培养分离Cp。  相似文献   

12.
13.
Mucin secretion in situ from rat intestinal loops was promoted more effectively by dialysed crude cholera filtrate than by an equivalent amount of purified enterotoxin. The filtrate could be rendered inactive by incubation with mixed gangliosides or passage through a GM1-affinity column, which indicated that the secretory action of the filtrate depended upon its enterotoxin component. In an effort to explain the greater potency of the filtrate, we established the presence of a metalloproteinase in the filtrate and demonstrated that this enzyme was capable of degrading purified rat intestinal mucin. Sufficient degradation occurred to cause a substantial decrease in viscosity (57% in 120 min). Biochemical analysis of the mucin before and after exposure to filtrate revealed a rise in the combined percentage of serine, threonine and proline (53-58%), suggesting that poorly glycosylated areas (which are less abundant in these amino acids) were being partly removed from the mucin. The carbohydrate composition was essentially unaltered. Inhibition of the filtrate metalloproteinase by Zincov and alpha 2-macroglobulin significantly (P less than 0.005) reduced the ability of cholera filtrate to degrade mucin or to stimulate mucin secretion from rat intestinal slices in vitro. Purified cholera enterotoxin added to enterotoxin-depleted filtrate was a more potent secretagogue (secretory stimulant) in intestinal loops than an equivalent amount of enterotoxin alone. We therefore propose that mucin secretion induced by cholera filtrate is caused by cholera enterotoxin, but that degradation of the protective epithelial mucus layer by a constituent metalloproteinase may assist the toxin by allowing increased access to mucosal GM1 receptor sites.  相似文献   

14.
《Life sciences》1995,56(9):PL195-PL200
Bosentan, a new type of orally effective, mixed (ETA+ETs) endothehn receptor antagonist has been recently introduced and tested in a variety of experimental models. We studied the effect of bosentan on the changes in gastric mucosal hemodynamics and mucosal integrity, induced by the exogenous application of endothelin-1, in rats. Bosentan (10 mg/kg iv) pretreated rats were injected with endothelin-1 (500-1000-2000 pmol/kg, iv) and gastric mucosal hemodynamics were monitored. After combined oral (30 mg/kg) and systemic pretreatment with bosentan we studied the effects of submucosal injection of endothelin-1 (50 pmol) on blood flow and gastric mucosa. Bosentan antagonized the vasodilator, vasoconstrictor and ulcerogenic effects of endothelin-1 in the rat gastric mucosa. These results show that bosentan can be a useful probe in the study of endogenous endothelin in the gastrointestinal tract.  相似文献   

15.
Gastric acid secretion is stimulated by all foods, especially proteins, and many beverages, the most potent beverages are milk and fermented substances such as beer and wine. The effects of food on mucosal integrity have been little studied, whereas non-steroidal anti-inflammatory drugs are well known to induce tissue injury.  相似文献   

16.
BACKGROUND: Our laboratory group observed earlier that the gastric mucosal cytoprotective effect of prostacyclin (PGI(2)) disappeared after surgical vagotomy in rats. Similarly to this, the beta-carotene induced gastric cytoprotection disappeared in adrenalectomized rats too. AIMS: In these studies we aimed to investigate the possible role of vagal nerve and adrenals in the development of gastric mucosal lesions induced by exogenously administered chemicals (ethanol, HCl, NaOH, NaCl and indomethacin), and on the effects of cytoprotective and antisecretory drugs (atropine, cimetidine), and scavengers (vitamin A and beta-carotene). METHODS: The observations were carried out in fasted CFY strain rats. The gastric mucosal lesions were produced by intragastric (i.g.) administration of narcotising agents (96% ethanol; 0.6 M HCl; 0.2 M NaOH; 25% NaCl) or subcutaneously (s.c.) administered indomethacin (20 mg/kg) in intact, surgically bilaterally vagatomized, and adrenalectomized rats without or with glucocorticoid supplementation (Oradexon, 0.6 mg/kg given i.m. for 1 week). The gastric mucosal protective effect of antisecretory doses of atropine (0.1-0.5-1.0 mg/kg i.g.) and cimetidine (10-25-50 mg/kg i.g.), and vitamin A and beta-carotene (0.01-0.1-1.0-10 mg/kg i.g.) was studied. The number and severity of mucosal gastric lesions was numerically or semiquantitatively measured. In other series of observations the gastric acid secretion and mucosal damage were studied in 24 h pylorus-ligated rats without and with acute bilateral surgical vagotomy. RESULTS: It was found that: (1) the chemical-induced gastric mucosal damage was enhanced in vagotomized and adrenalectomized rats, meanwhile the endogenous secretion of gastric acid, and the development of mucosal damage can be prevented by surgical vagotomy; (2) the gastric cyto- and general protection produced by the drugs and scavengers disappeared in vagotomized and adrenalectomized rats; (3) the gastric mucosal protective effects of drugs and of scavengers returned after sufficient glucocorticoid supplementation of the rats. CONCLUSION: It has been concluded that the intact vagal nerve and adrenals have a key role in the gastric mucosal integrity, and in drugs- and scavengers-induced gastric cyto- and general mucosal protection.  相似文献   

17.
18.
19.
In gastric mucosal injury, nitric oxide (NO) plays both cytoprotective and cytotoxic roles, and the NO level is one determinant of these dual roles. We employed electron paramagnetic resonance (EPR)-spectrometry combined with an NO-trapping technique to directly evaluate NO production in ethanol-induced gastric injury in rats. The rat stomach, mounted on an ex vivo chamber, was perfused with ethanol (12.5 and 43%), and NO levels in mucosal tissues were measured during perfusion. Luminal nitrite/nitrate (NOx) content, mucosal blood flow, area of mucosal injury, transmucosal potential difference (PD), and luminal pH were simultaneously monitored with/without preadministration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO levels in the gastric tissue increased during ethanol perfusion, and luminal NOx levels increased after the perfusion, accompanying an increase in the area of mucosal injury and changes in physiological parameters. Preadministration of L-NAME aggravated the gastric mucosal damage and suppressed increases in mucosal blood flow in a dose-dependent manner. These results demonstrate that endogenous NO produced in ethanol-induced gastric injury contributes to maintenance of mucosal integrity via regulation of mucosal blood flow.  相似文献   

20.
Gastric mucin is a glycoprotein known to undergo a pH-dependent sol-gel transition that is crucial to the protective function of the gastric mucus layer in mammalian stomachs. We present microscope-based dynamic light scattering data on porcine gastric mucin at pH 6 (solution) and pH 2 (gel) with and without the presence of tracer particles. The data provide a measurement of the microscale viscosity and the shear elastic modulus as well as an estimate of the mesh size of the gel formed at pH 2. We observe that the microscale viscosity in the gel is about 100-fold lower than its macroscopic viscosity, suggesting that large pores open up in the gel reducing frictional effects. The data presented here help to characterize physiologically relevant viscoelastic properties of an important biological macromolecule and may also serve to shed light on diffusive motion of small particles in the complex heterogeneous environment of a polymer gel network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号