首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The circular dichroism spectra of glutamine synthetase (EC 6.3.1.2) from pea chloroplasts were recorded. Based on these spectra the percentage of alpha-helix sites, beta-structures, beta-bends and disordered sites of the polypeptide chain was calculated and was found equal to 23, 57, 1 and 23%, respectively. Data from protein photooxidation in the presence of methylene blue and the type of pH-dependence of pKm suggest that glutamate binding takes place on the imidazole ring of the histidine molecule. The inhibition of native glutamine synthetase by p-chloromercurybenzoate and the presence of free SH-groups in the enzyme molecule (approximately two SH-groups per monomer) suggest that these groups are the functional groups of the enzyme active center.  相似文献   

2.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

3.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

4.
We have previously assessed the GroE chaperonin requirements for folding of bacterial glutamine synthetase (GS) and established that, at 37 degrees C in 50 mM Tris buffer, ATP binding to the GroEL-GS complex is mandatory for the release and reactivation of dodecameric enzyme. However, we demonstrate here that the addition of 1-4 M glycerol to GroEL-GS complexes resulted in release and reactivation of GS in the absence of nucleotide. Furthermore, the kinetics of refolding and refolding yields of this glycerol-induced refolding were similar to those observed with ATP. Other polyols such as sucrose, 1,2-propanediol, or 1,3-propanediol also facilitated nucleotide-independent refolding of GS from chaperonin complex. The observed phenomenon cannot be attributed to the viscosity or molecular crowding effects because solutions of dextran or Ficoll with the same viscosity as 4 M glycerol failed to reactivate GroEL-bound GS. Like glycerol, other osmolytes such as betaine and sarcosine or high salt (500 mM NaCl) facilitated spontaneous folding of GS. However, no reactivation of GroEL-bound GS was observed with these additives. The presence of glycerol affected binding of fluorescent probe 1,8-anilinonaphthalene to GroEL, suggesting that glycerol may alter the chaperonin structure. Our data suggest that low-molecular-weight polyols affect both GroEL and bound GS monomers to reduce their binding affinity. This results in an increased partitioning of GS toward active, assembly-competent states.  相似文献   

5.
P M Anderson  J D Carlson 《Biochemistry》1975,14(16):3688-3694
Carbamyl phosphate synthetase from Escherichia coli reacts stoichiometrically (one to one) with [14C]cyanate to give a 14C-labeled complex which can be isolated by gel filtration. The formation of the complex is prevented if L-glutamine is present or if the enzyme is first reacted with 2-amino-4-oxo-5-chloropentanoic acid, a chloro ketone analog of glutamine which has been shown to react with a specific SH group in the glutamine binding site. The rate of complex formation is increased by ADP and decreased by ATP and HCO3-. The isolated complex is inactive with respect to glutamine-dependent synthetase activity. However, the reaction of cyanate with the enzyme is reversible. The rate of dissociation of the isolated complex is not affected by pH (over the pH range 6-10), is greatly increased by ATP and HCO3-, and is decreased by ADP. The allosteric effectors ornithine and UMP have no effect on either the rate of formation or the rate of dissociation of the complex; however, the apparent affinity of the enzyme for ATP is decreased by UMP and increased by ornithine. The site of reaction of cyanate with carbamyl phosphate synthetase, which is composed of a light and a heavy subunit, is with an SH group in the light subunit to give an S-carbamylcysteine residue. The binding of L-[14C]glutamine to the enzyme and the inhibition of glutamine-dependent synthetase activity by the chloroketone analog are both prevented by the presence of cyanate. The reaction with cyanate is considered to be with the same essential SH group which is located in the glutamine binding site and is alkylated by 2-amino-4-oxo-5-chloropentanoic acid. The bicarbonate-dependent effects of ATP suggest that formation of the activated carbon dioxide intermediate is accompanied by changes in the heavy subunit which functionally alter the properties of the glutamine binding site on the light subunit. The allosteric effects of ornithine and UMP are probably not related to this intersubunit interaction.  相似文献   

6.
The transition between the native and denatured states of the tetrameric succinyl-CoA synthetase from Escherichia coli has been investigated by circular dichroism, fluorescence spectroscopy, cross-linking by glutaraldehyde and activity measurements. At pH 7.4 and 25 degrees C, both denaturation of succinyl-CoA synthetase by guanidine hydrochloride and refolding of the denatured enzyme have been characterized as reversible reactions. In the presence of its substrate ATP, the denatured enzyme could be successfully reconstituted into the active enzyme with a yield of 71-100%. Kinetically, reacquisition of secondary structure by the denatured enzyme was rapid and occurred within 1 min after refolding was initiated. On the other hand, its reactivation was a slow process which continued up to 25 min before 90% of the native activity could be restored. Both secondary and quaternary structures of the enzyme, reconstituted in the absence of ATP, were indistinguishable from those of the native enzyme but the renatured protein was catalytically inactive. This observation indicates the presence of catalytically inactive tetramer as an intermediate in the reconstitution process. The reconstituted protein could be reactivated by ATP even 10 min after the reacquisition of the native secondary structure by the refolding protein. However, reactivation of the protein by ATP 60 min after the regain of secondary structure was significantly less, suggesting that rapid refolding and reassociation of the monomers into a native-like tetramer and reactivation of the tetramer are sequential events; the latter involving slow and small conformational rearrangements in the refolded enzyme that are likely to be associated with phosphorylation.  相似文献   

7.
Although glutamine synthetase from Escherichia coli is composed of 12 identical subunits, there is no evidence that homologous subunit interactions occur in fully unadenylylated or fully adenylylated enzyme. Meister and co-workers (Manning, J. M., Moore, S., Rowe, W. B., and Meister, A. (1969) Biochemistry 8, 2681-2685) have shown that L-methionine-S-sulfoximine, one of the four diastereomers of methionine sulfoximine, preferentially inhibits glutamine synthetase irreversibly in the presence of ATP, due to the formation of tightly bound products, ADP, and methionine sulfoximine phosphate. Using highly purified unadenylylated glutamine synthetase and the two resolved diastereomers of L-methionine-S,R-sulfoximine, we have studied both the kinetics of glutamine synthetase inactivation in the presence of excess methionine sulfoximine and ATP, and the binding of methionine sulfoximine to the enzyme. The results reveal that (a) the apparent first order rate constant of irreversible inactivation by the S isomer decreases progressively from the expected first order rate, indicating that an inactivated subunit retards the reactivity of its neighboring subunits toward methionine sulfoximine and ATP; (b) the R isomer does not inactivate glutamine synthetase irreversibly in the presence of ATP; however, the R isomer is capable of protecting the enzyme temporarily from the irreversible inhibition by the S isomer; and (c) the binding of the S isomer monitored by changes in protein fluorescence exhibits an apparent negative cooperative binding isotherm, whereas the R isomer yields an apparent positive cooperative pattern.  相似文献   

8.
I S Krishnan  R D Dua 《FEBS letters》1985,185(2):267-271
Preliminary chemical modification studies indicated the presence of tyrosine, carboxyl, arginine, histidine and the absence of serine and sulfhydryl residues at or near the active site of Clostridium pasteurianum glutamine synthetase. The conditions for tyrosine modification with tetranitromethane were optimized. The inactivation kinetics follow pseudo-first-order kinetics with respect to enzyme and second order with respect to modifier per active site. There was no inactivation at pH 6.5 suggesting the absence of thiol oxidation. The synthetase and transferase reactions followed the same pattern of inactivation on enzyme modification and both were equally protected by glutamate plus ATP. Thus tyrosine residues are present at the active site of the enzyme and are essential for both transferase and synthetase activities.  相似文献   

9.
Aminoimidazole ribonucleotide (AIR) synthetase (PurM) catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and P(i), the fifth step in de novo purine biosynthesis. The ATP binding domain of the E. coli enzyme has been investigated using the affinity label [(14)C]-p-fluorosulfonylbenzoyl adenosine (FSBA). This compound results in time-dependent inactivation of the enzyme which is accelerated by the presence of FGAM, and gives a K(i) = 25 microM and a k(inact) = 5.6 x 10(-)(2) min(-)(1). The inactivation is inhibited by ADP and is stoichiometric with respect to AIR synthetase. After trypsin digestion of the labeled enzyme, a single labeled peptide has been isolated, I-X-G-V-V-K, where X is Lys27 modified by FSBA. Site-directed mutants of AIR synthetase were prepared in which this Lys27 was replaced with a Gln, a Leu, and an Arg and the kinetic parameters of the mutant proteins were measured. All three mutants gave k(cat)s similar to the wild-type enzyme and K(m)s for ATP less than that determined for the wild-type enzyme. Efforts to inactivate the chicken liver trifunctional AIR synthetase with FSBA were unsuccessful, despite the presence of a Lys27 equivalent. The role of Lys27 in ATP binding appears to be associated with the methylene linker rather than its epsilon-amino group. The specific labeling of the active site by FSBA has helped to define the active site in the recently determined structure of AIR synthetase [Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M., and Ealick, S. E. (1999) Structure (in press)], and suggests additional flexibility in the ATP binding region.  相似文献   

10.
The interaction of Escherichia coli glutamine synthetase with the adenosine 5'-triphosphate analogue, 5'-p-fluorosulfonylbenzoyladenosine (5'-FSO2BzAdo), has been studied. This interaction results in the covalent attachment of the 5'-FSO2BzAdo to the enzyme with concomitant loss of catalytic activity. Although adenine nucleotides interact with glutamine synthetase at three distinct sites--a noncovalent AMP effector site, a regulatory site of covalent adenylylation, and the catalytic ATP/ADP binding site--our studies suggest that reaction with 5'-FSO2BzAdo occurs only at the active center. When glutamine synthetase was incubated with 5'-FSO2BzAdo, the decrease in catalytic activity obeyed pseudo-first order kinetics. The plot of the observed rate constant of inactivation versus the concentration of 5'-FSO2BzAdo was hyperbolic, consistent with reversible binding of the analogue to the enzyme prior to covalent attachment. Protection against inactivation was afforded by ATP and ADP; L-glutamate did not protect the enzyme against inactivation, but rather enhanced the rate of inactivation, consistent with the observations of others (Timmons, R. B., Rhee, S. G., Luterman, D. L., and Chock, P. B. (1974) Biochemistry 13, 4479-4485) that there is synergism in the binding of the two substrates to the enzyme. The incorporation of approximately 1.09 mol of the 5'-FSO2BzAdo/mol of glutamine synthetase subunit resulted in the total loss of enzymatic activity. The results suggest that 5'-FSO2BzAdo occupies the ATP binding site at the active center of glutamine synthetase and binds covalently to an amino acid residue nearby.  相似文献   

11.
S G Miran  S H Chang  F M Raushel 《Biochemistry》1991,30(32):7901-7907
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic activities of the H272N and H341N mutants are not significantly different than that of the wild-type enzyme. The H353N mutant is unable to utilize glutamine as a nitrogen source in the synthetase reaction or the partial glutaminase reaction. However, binding to the glutamine active site is not impaired in the H353N enzyme since glutamine is found to activate the partial ATPase reaction by 40% with a Kd of 54 microM. The H312N mutant has a Michaelis constant for glutamine that is 2 orders of magnitude larger than the wild-type value, but the maximal rate of glutamine hydrolysis is unchanged. These results are consistent with His-353 functioning as a general acid/base catalyst for proton transfers while His-312 serves a critical role for the binding of glutamine to the active site.  相似文献   

12.
13.
The purL gene of Escherichia coli encoding the enzyme formylglycinamidine ribonucleotide (FGAM) synthetase which catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), glutamine, and MgATP to FGAM, glutamate, ADP, and Pi has been cloned and sequenced. The mature protein, as deduced by the structural gene sequence, contains 1628 amino acids and has a calculated Mr of 141,418. Comparison of the purL control region to other pur loci control regions reveals a common region of dyad symmetry which may be the binding site for the "putative" repressor protein. Construction of an overproducing strain permitted purification of the protein to homogeneity. N-Terminal sequence analysis and comparison of glutamine binding domain sequences (Ebbole & Zalkin, 1987) confirm the amino acid sequence deduced from the gene sequence. The purified protein exhibits glutaminase activity of 0.02% the normal turnover, and NH3 can replace glutamine as a nitrogen donor with a Km = 1 M and a turnover of 3 min-1 (2% glutamine turnover). The enzyme forms an isolable (1:1) complex with glutamine: t1/2 is 22 min at 4 degrees C. This isolated complex is not chemically competent to complete turnover when FGAR and ATP are added, demonstrating that ammonia and glutamine are not covalently bound as a thiohemiaminal available to complete the chemical conversion to FGAM. hydroxylamine trapping experiments indicate that glutamine is bound covalently to the enzyme as a thiol ester. Initial velocity and dead-end inhibition kinetic studies on FGAM synthetase are most consistent with a sequential mechanism in which glutamine binds followed by rapid equilibrium binding of MgATP and then FGAR. Incubation of [18O]FGAR with enzyme, ATP, and glutamine results in quantitative transfer of the 18O to Pi.  相似文献   

14.
A decrease of glutamine synthetase (E. C. 6.3.1.2.) activity was observed under the assimilation of ammonium nitrogen in Chlorella. At the same time a decrease of ATP content in Chlorella cells took place. The ATP content was 7-fold decreased, while ADP and AMP contents were 4-fold and 3-fold increased respectively, after 15 min. of Chlorella incubation on "ammonium" medium. Further incubation for 45 min, resulted in gradual increase of ATP content and in decrease of ADP and AMP contents. The value of energy charge in ammonium assimilating Chlorella cells sharply decreased for first 15 min. of incubation and then it normalized gradually. The experiments with glutamine synthetase preparation, isolated from ammonium assimilating cells, have shown that ADP and AMP are strong inhibitors of the enzyme in the presence of Mg2+, and only ADP produces the inhibitory effect in the presence of Mn2+. No enzyme reactivation was observed after the transfer of ammonium assimilating cells into nitrogen-free medium or nitrate medium, the enzyme activity increasing at the expense of enzyme protein synthesis denovo.  相似文献   

15.
The effect of urea on Chlorella glutamine synthetase (E. C. 6.3.1.2) activity and tertiary structure is investigated. Urea is found to inhibit the activity of glutamine synthetase, the inhibitory effect being independent on the time. The enzyme molecule relax and changes its affinity to ammonium under the effect of urea at concentrations of 1.0-4.0 M. Higher concentrations of urea (5,0 M and more) produce a dissociation of the enzyme molecule into monomers without any intermediate forms. Monomers do not possess any synthetase and transferase activities. Substrates and cofactors do not protect the enzyme from the effect of urea and do not stimulate the emzyme reactivation and reaggregation after its dissotiation. The data obtained are discussed from the viewpoint of the regulation of Chlorella glutamine synthetase activity in vivo.  相似文献   

16.
The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM).  相似文献   

17.
Preincubation in assay mixture for 30 min at 37 degrees C of ATP citrate lyase from rat brain and liver results in 65-70% inhibition in the presence of 10 mM L-glutamate. This inhibition is specific since none of the known brain metabolites of glutamate shows this effect. ATP and ammonium sulphate-suspended, commercially purified malate dehydrogenase are both important in the generation of inhibition; citrate and NADH are not. The ATP citrate lyase activity in desalted crude extracts and 11% polyethylene glycol-precipitated fractions is inhibited but the enzyme purified by dye affinity chromatography is unaffected. Such purification reveals the presence of a factor responsible for the generation of the inhibition shown to be of Mr 380,000. These lines of evidence implicate endogenous glutamine synthetase, and the involvement of this enzyme is established by the use of its inhibitor L-methionine sulphoximine and by the addition of purified glutamine synthetase to restore the glutamate inhibition of purified ATP citrate lyase. The phenomenon probably arises from the production by glutamine synthetase of ADP, a known product inhibitor of ATP citrate lyase. Therefore contrary to previous reports elsewhere, L-glutamate has no role in the regulation of brain ATP citrate lyase and thus the supply of cytoplasmic acetyl groups for biosynthesis.  相似文献   

18.
Glutamine synthetase from Escherichia coli is composed of 12 identical subunits and exists in various forms: unadenylylated, adenylylated, divalent cation bound (taut), and divalent cation free (relaxed). The relaxed dodecamer readily dissociates into monomers upon exposure to 1 M urea or pH 8.0. Glutamine synthetase can be inactivated irreversibly by oxidizing a particular histidine residue or by incubating with methionine sulfoximine and ATP. In order to establish hybridoma monoclones that produce antibodies capable of differentiating between different conformers of glutamine synthetase, homogeneous antibodies produced from 7 clones (10-76-1, 48-76-1, 68-2-1, 57-142-2, 72-104-1, 68-3-2, 57-8-1) were characterized for their binding specificity and effects on glutamine synthetase activity. Two antibodies (10-76-1, 48-76-1) bind only to the monomeric form, two antibodies (57-142-2, 68-3-2) bind only to the dodecameric forms (taut or relaxed) and the three others (68-2-1, 72-104-1, 57-8-1) bind to both forms. At a low antibody concentration, 68-3-2 binds preferentially to taut glutamine synthetase over oxidized glutamine synthetase. None of the 7 antibodies differentiates between unadenylylated and adenylylated form. Nevertheless, the gamma-glutamyltransferase activities of the resulting antibody-glutamine synthetase complexes were influenced variably depending upon the state of adenylylation and the divalent cation.  相似文献   

19.
CTP synthetase (CTPs) catalyzes the last step in CTP biosynthesis, in which ammonia generated at the glutaminase domain reacts with the ATP-phosphorylated UTP at the synthetase domain to give CTP. Glutamine hydrolysis is active in the presence of ATP and UTP and is stimulated by the addition of GTP. We report the crystal structures of Thermus thermophilus HB8 CTPs alone, CTPs with 3SO4(2-), and CTPs with glutamine. The enzyme is folded into a homotetramer with a cross-shaped structure. Based on the binding mode of sulfate anions to the synthetase site, ATP and UTP are computer modeled into CTPs with a geometry favorable for the reaction. Glutamine bound to the glutaminase domain is situated next to the triad of Glu-His-Cys as a catalyst and a water molecule. Structural information provides an insight into the conformational changes associated with the binding of ATP and UTP and the formation of the GTP binding site.  相似文献   

20.
The interaction of unadenylylated form of Escherichia coli glutamine synthetase with several substrates and effectors has been examined by magnetic resonance techniques. These studies show that two manganese ions bind per enzyme subunit. From the dramatic line broadening observed in the alanine spectra in the presence of manganese and enzyme, it is concluded that the binding of alanine occurs at a site nearer one of the two manganese sites. Electron spin resonance (ESR) titration experiments suggest apparent dissociation constants of 20 and 120 muM for manganese to these sites in the presence of 1.0 mM magnesium ion. The manganese concentration dependence of the broadening of alanine suggests an affinity of 30 muM for the manganese closest to the alanine binding site. This suggests that alanine binds closer to the more tightly bound manganese ion. Glutamate appears to displace the alanine and also appears to bind close to the strongly bound manganese ion. It is proposed that alanine and glutamine bind competitively and in the same site. The binding of alanine and ATP is shown to thermodynamically interact such that the presence of one ligand increases the affinity of the enzyme for the other ligand. The presence of ATP dramatically sharpens the alanine line width when manganese and glutamine synthetase are present. Addition of ADP or phosphate alone has little effect on the alanine line width but the addition of both ADP and phosphate shows the same dramatic sharpening as the addition of ATP alone, suggesting an induced fit conformational change in the enzyme induced by ATP or by both ADP and phosphate. A binding scheme is proposed in which all feedback inhibitors of the enzyme bind in a competitive fashion with substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号