首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Octamer sequencing technology (OST) is a primer-directed sequencing strategy in which an individual octamer primer is selected from a pre-synthesized octamer primer library and used to sequence a DNA fragment. However, selecting candidate primers from such a library is time consuming and can be a bottleneck in the sequencing process. To accelerate the sequencing process and to obtain high quality sequencing data, a computer program, electronic OST or eOST, was developed to automatically identify candidate primers from an octamer primer library. eOST integrates the base calling software PHRED to provide a quality assessment for target sequences and identifies potential primer binding sites located within a high quality target region. To increase the sequencing success rate, eOST includes a simple dynamic folding algorithm to automatically calculate the free energy and predict the secondary structure within the template in the vicinity of the octamer-binding site. Several parameters were found to be important, including base quality threshold, the window size of the template sequence segment, and the threshold ΔG value. OST, coupled with the eOST software, can be used to sequence short DNA fragments or in the finishing assembly stage of large-scale sequencing of genomic DNA.  相似文献   

2.
We analyzed the ability of various cell extracts to extend a radiolabeled primer past an N-2-acetylaminofluorene (AAF) adduct located on a primed single-stranded template. When the 3′ end of the primer is located opposite the lesion, partially fractionated human primary fibroblast extracts efficiently catalyzed primer-terminus extension by adding a ladder of about 15 dGMPs, in an apparently non-templated reaction. This activity was not detected in SV40-transformed fibroblasts or in HeLa cell extracts unless purified human DNA polymerase mu (Pol µ) was added. In contrast, purified human Pol µ alone could only add three dGMPs as predicted from the sequence of the template. These results suggest that a cofactor(s) present in cellular extracts modifies Pol µ activity. The production of the dGMP ladder at the primer terminus located opposite the AAF adduct reveals an unusual ability of Pol µ (in conjunction with its cofactor) to perform DNA synthesis from a slipped intermediate containing several unpaired bases.  相似文献   

3.
Bisulfite genomic sequencing is the method of choice for the generation of methylation maps with single-base resolution. The method is based on the selective deamination of cytosine to uracil by treatment with bisulfite and the sequencing of subsequently generated PCR products. In contrast to cytosine, 5-methylcytosine does not react with bisulfite and can therefore be distinguished. In order to investigate the potential for optimization of the method and to determine the critical experimental parameters, we determined the influence of incubation time and incubation temperature on the deamination efficiency and measured the degree of DNA degradation during the bisulfite treatment. We found that maximum conversion rates of cytosine occurred at 55°C (4–18 h) and 95°C (1 h). Under these conditions at least 84–96% of the DNA is degraded. To study the impact of primer selection, homologous DNA templates were constructed possessing cytosine-containing and cytosine-free primer binding sites, respectively. The recognition rates for cytosine (≥97%) and 5-methylcytosine (≥94%) were found to be identical for both templates.  相似文献   

4.
DNA polymerase mu (Pol µ) is a novel family X DNA polymerase that has been suggested to play a role in micro-homology mediated joining and repair of double strand breaks. We show here that human Pol µ is not able to discriminate against the 2′-OH group of the sugar moiety. It inserts rNTPs with an efficiency that is <10-fold lower than that of dNTPs, in sharp contrast with the >1000-fold discrimination characteristic of most DNA-dependent DNA polymerases. The lack of sugar discrimination by Pol µ is demonstrated by its ability to add rNTPs to both DNA and RNA primer strands, and to insert both deoxy- and ribonucleotides on growing nucleic acid chains. 3D-modelling of human Pol µ based on the available Pol β and TdT structural information allowed us to predict candidate residues involved in sugar discrimination. Thus, a single amino acid substitution in which Gly433 residue of Pol µ was mutated to the consensus tyrosine present in Pol β, produced a strong increase in the discrimination against ribonucleotides. The unusual capacity to insert both rNTPs and dNTPs will be discussed in the context of the predicted roles of Pol µ in DNA repair.  相似文献   

5.
6.
8-Halogenated guanine (haloG), a major DNA adduct formed by reactive halogen species during inflammation, is a promutagenic lesion that promotes misincorporation of G opposite the lesion by various DNA polymerases. Currently, the structural basis for such misincorporation is unknown. To gain insights into the mechanism of misincorporation across haloG by polymerase, we determined seven x-ray structures of human DNA polymerase β (polβ) bound to DNA bearing 8-bromoguanine (BrG). We determined two pre-catalytic ternary complex structures of polβ with an incoming nonhydrolyzable dGTP or dCTP analog paired with templating BrG. We also determined five binary complex structures of polβ in complex with DNA containing BrG·C/T at post-insertion and post-extension sites. In the BrG·dGTP ternary structure, BrG adopts syn conformation and forms Hoogsteen base pairing with the incoming dGTP analog. In the BrG·dCTP ternary structure, BrG adopts anti conformation and forms Watson-Crick base pairing with the incoming dCTP analog. In addition, our polβ binary post-extension structures show Hoogsteen BrG·G base pair and Watson-Crick BrG·C base pair. Taken together, the first structures of haloG-containing DNA bound to a protein indicate that both BrG·G and BrG·C base pairs are accommodated in the active site of polβ. Our structures suggest that Hoogsteen-type base pairing between G and C8-modified G could be accommodated in the active site of a DNA polymerase, promoting G to C mutation.  相似文献   

7.
ΩqPCR determines absolute telomere length in kb units from single cells. Accuracy and precision of ΩqPCR were assessed using 800 bp and 1600 bp synthetic telomeres inserted into plasmids, which were measured to be 819 ± 19.6 and 1590 ± 42.3 bp, respectively. This is the first telomere length measuring method verified in this way. The approach uses Ω-probes, a DNA strand containing sequence information that enables: (i) hybridization with the telomere via the 3′ and 5′ ends that become opposed; (ii) ligation of the hybridized probes to circularize the Ω-probes and (iii) circularized-dependent qPCR due to sequence information for a forward primer, and for a reverse primer binding site, and qPCR hydrolysis probe binding. Read through of the polymerase during qPCR occurs only in circularized Ω-probes, which quantifies their number that is directly proportional to telomere length. When used in concert with information about the cell cycle stage from a single-copy gene, and ploidy, the MTL of single cells measured by ΩqPCR was consistent with that obtained from large sample sizes by TRF.  相似文献   

8.
A novel mutator locus in Escherichia coli was identified from a collection of random transposon insertion mutants. Several mutators in this collection were found to have an insertion in the dgt gene, encoding a previously characterized dGTP triphosphohydrolase. The mutator activity of the dgt mutants displays an unusual specificity. Among the six possible base pair substitutions in a lacZ reversion system, the G·C→C·G transversion and A·T→G·C transition are strongly enhanced (10- to 50-fold), while a modest effect (two- to threefold) is also observed for the G·C→A·T transition. Interestingly, a two- to threefold reduction in mutant frequency (antimutator effect) is observed for the G·C→T·A transversion. In the absence of DNA mismatch repair (mutL) some of these effects are reduced or abolished, while other effects remain unchanged. Analysis of these effects, combined with the DNA sequence contexts in which the reversions take place, suggests that alterations of the dGTP pools as well as alterations in the level of some modified dNTP derivatives could affect the fidelity of in vivo DNA replication and, hence, account for the overall mutator effects.  相似文献   

9.
Non-homologous end-joining (NHEJ), the preferred pathway to repair double-strand breaks (DSBs) in higher eukaryotes, relies on a collection of molecular tools to process the broken ends, including specific DNA polymerases. Among them, Polµ is unique as it can catalyze DNA synthesis upon connection of two non-complementary ends. Here, we demonstrate that this capacity is intrinsic to Polµ, not conferred by other NHEJ factors. To understand the molecular determinants of its specific function in NHEJ, the interaction of human Polµ with DNA has been directly visualized by electromobility shift assay and footprinting assays. Stable interaction with a DNA gap requires the presence of a recessive 5′-P, thus orienting the catalytic domain for primer and nucleotide binding. Accordingly, recognition of the 5′-P is crucial to align the two DNA substrates of the NHEJ reaction. Site-directed mutagenesis demonstrates the relevance of three specific residues (Lys249, Arg253 and Arg416) in stabilizing the primer strand during end synapsis, allowing a range of microhomology-induced distortions beneficial for NHEJ. Moreover, our results suggest that the Polµ BRCT domain, thought to be exclusively involved in interaction with NHEJ core factors, has a direct role in binding the DNA region neighbor to the 5′-P, thus boosting Polµ-mediated NHEJ reactions.  相似文献   

10.
11.
The objective of the present study was to investigate the effects of cadmium-zinc (Cd-Zn) interactions on their uptake, oxidative damage of cell macromolecules (lipids, proteins, DNA) and activities of antioxidative enzymes in tobacco seedlings as well as roots and leaves of adult plants. Seedlings and plants were exposed to Cd (10 µM and 15 µM) and Zn (25 µM and 50 µM) as well as their combinations (10 µM or 15 µM Cd with either 25 µM or 50 µM Zn). Measurement of metal accumulation exhibited that Zn had mostly positive effect on Cd uptake in roots and seedlings, while Cd had antagonistic effect on Zn uptake in leaves and roots. According to examined oxidative stress parameters, in seedlings and roots individual Cd treatments induced oxidative damage, which was less prominent in combined treatments, indicating that the presence of Zn alleviates oxidative stress. However, DNA damage found in seedlings, and lower glutathione reductase (GR) and superoxide dismutase (SOD) activity recorded in both seedlings and roots, after individual Zn treatments, indicate that Zn accumulation could impose toxic effects. In leaves, oxidative stress was found after exposure to Cd either alone or in combination with Zn, thus implying that in this tissue Zn did not have alleviating effects. In conclusion, results obtained in different tobacco tissues suggest tissue-dependent Cd-Zn interactions, which resulted in activation of different mechanisms involved in the protection against metal stress.  相似文献   

12.
Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A–H2B and DNA association with the G. lamblia H3–H4 were weaker than those for human H3–H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.  相似文献   

13.
DNA bending induced by six DNA (cytosine-5) methyltransferases was studied using circular permutation gel mobility shift assay. The following bend angles were obtained: M.BspRI (GGm5CC), 46–50°; M.HaeIII (GGm5CC), 40–43°; M.SinI (GGWm5CC), 34–37°; M.Sau96I (GGNm5CC), 52–57°; M.HpaII (Cm5CGG), 30°; and M.HhaI (Gm5CGC), 13°. M.HaeIII was also tested with fragments carrying a methylated binding site, and it was found to induce a 32° bend. A phase-sensitive gel mobility shift assay, using a set of DNA fragments with a sequence-directed bend and a single methyltransferase binding site, indicated that M.HaeIII and M.BspRI bend DNA toward the minor groove. The DNA curvature induced by M.HaeIII contrasts with the lack of DNA bend observed for a covalent M.HaeIII–DNA complex in an earlier X-ray study. Our results and data from other laboratories show a correlation between the bending properties and the recognition specificities of (cytosine-5) methyltransferases: enzymes recognizing a cytosine 3′ to the target cytosine tend to induce greater bends than enzymes with guanine in this position. We suggest that the observed differences indicate different mechanisms employed by (cytosine-5) methyltransferases to stabilize the helix after the target base has flipped out.  相似文献   

14.
15.
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

16.
Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered.  相似文献   

17.
Senescence occurs upon critical telomere shortening, or following DNA damage, oncogenic activation, hypoxia and oxidative stress, overall referred to stress‐induced premature senescence (SIPS). In response to DNA damage, senescent cells release cytoplasmic chromatin fragments (CCFs), and express an altered secretome, the senescence‐associated secretory phenotype (SASP), which contributes to generate a pro‐inflammatory and pro‐tumoral extracellular milieu. Polyphenols have gained significant attention owing to their anti‐inflammatory and anti‐tumour activities. Here, we studied the effect of oleuropein aglycone (OLE) and hydroxytyrosol (HT) on DNA damage, CCF appearance and SASP in a model of irradiation‐induced senescence. Neonatal human dermal fibroblasts (NHDFs) were γ‐irradiated and incubated with OLE, 5 µM and HT, 1 µM. Cell growth and senescence‐associated (SA)‐β‐Gal‐staining were used as senescence markers. DNA damage was evaluated by Comet assay, lamin B1 expression, release of CCFs, cyclic GMP‐AMP Synthase (cGAS) activation. IL‐6, IL‐8, MCP‐1 and RANTES were measured by ELISA assay. Our results showed that OLE and HT exerted a protective effect on 8 Gy irradiation‐induced senescence, preserving lamin B1 expression and reducing cGAS/STING/NFκB‐mediated SASP. The ability of OLE and HT to mitigate DNA damage, senescence status and the related SASP in normal cells can be exploited to improve the efficacy and safety of cancer radiotherapy.  相似文献   

18.

Background

Non-invasively collected samples allow a variety of genetic studies on endangered and elusive species. However due to low amplification success and high genotyping error rates fewer samples can be identified up to the individual level. Number of PCRs needed to obtain reliable genotypes also noticeably increase.

Methods

We developed a quantitative PCR assay to measure and grade amplifiable nuclear DNA in feline faecal extracts. We determined DNA degradation in experimentally aged faecal samples and tested a suite of pre-PCR protocols to considerably improve DNA retrieval.

Results

Average DNA concentrations of Grade I, II and III extracts were 982pg/µl, 9.5pg/µl and 0.4pg/µl respectively. Nearly 10% of extracts had no amplifiable DNA. Microsatellite PCR success and allelic dropout rates were 92% and 1.5% in Grade I, 79% and 5% in Grade II, and 54% and 16% in Grade III respectively. Our results on experimentally aged faecal samples showed that ageing has a significant effect on quantity and quality of amplifiable DNA (p<0.001). Maximum DNA degradation occurs within 3 days of exposure to direct sunlight. DNA concentrations of Day 1 samples stored by ethanol and silica methods for a month varied significantly from fresh Day 1 extracts (p<0.1 and p<0.001). This difference was not significant when samples were preserved by two-step method (p>0.05). DNA concentrations of fresh tiger and leopard faecal extracts without addition of carrier RNA were 816.5pg/µl (±115.5) and 690.1pg/µl (±207.1), while concentrations with addition of carrier RNA were 49414.5pg/µl (±9370.6) and 20982.7pg/µl (±6835.8) respectively.

Conclusions

Our results indicate that carnivore faecal samples should be collected as freshly as possible, are better preserved by two-step method and should be extracted with addition of carrier RNA. We recommend quantification of template DNA as this facilitates several downstream protocols.  相似文献   

19.
20.
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s−1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9–13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号